Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Cell Mol Immunol ; 21(5): 495-509, 2024 May.
Article En | MEDLINE | ID: mdl-38448555

The overexpression of sialic acids on glycans, called hypersialylation, is a common alteration found in cancer cells. Sialylated glycans can enhance immune evasion by interacting with sialic acid-binding immunoglobulin-like lectin (Siglec) receptors on tumor-infiltrating immune cells. Here, we investigated the effect of sialylated glycans and their interaction with Siglec receptors on myeloid-derived suppressor cells (MDSCs). We found that MDSCs derived from the blood of lung cancer patients and tumor-bearing mice strongly express inhibitory Siglec receptors and are highly sialylated. In murine cancer models of emergency myelopoiesis, Siglec-E knockout in myeloid cells resulted in prolonged survival and increased tumor infiltration of activated T cells. Targeting suppressive myeloid cells by blocking Siglec receptors or desialylation strongly reduced their suppressive potential. We further identified CCL2 as a mediator involved in T-cell suppression upon interaction between sialoglycans and Siglec receptors on MDSCs. Our results demonstrated that sialylated glycans inhibit anticancer immunity by modulating CCL2 expression.


Chemokine CCL2 , Mice, Inbred C57BL , Myeloid-Derived Suppressor Cells , Polysaccharides , Sialic Acid Binding Immunoglobulin-like Lectins , Animals , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Polysaccharides/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Humans , Chemokine CCL2/metabolism , Mice , Mice, Knockout , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Lung Neoplasms/immunology , Lung Neoplasms/pathology , N-Acetylneuraminic Acid/metabolism
2.
Front Immunol ; 14: 1291292, 2023.
Article En | MEDLINE | ID: mdl-38094289

Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.


Neoplasms , Humans , Antigens, Neoplasm , G(M3) Ganglioside/chemistry , Glycolipids , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/metabolism , Skin/chemistry , Skin/metabolism
3.
Immunity ; 55(10): 1953-1966.e10, 2022 10 11.
Article En | MEDLINE | ID: mdl-36174557

A major challenge in adoptive T cell immunotherapy is the discovery of natural T cell receptors (TCRs) with high activity and specificity to tumor antigens. Engineering synthetic TCRs for increased tumor antigen recognition is complicated by the risk of introducing cross-reactivity and by the poor correlation that can exist between binding affinity and activity of TCRs in response to antigen (peptide-MHC). Here, we developed TCR-Engine, a method combining genome editing, computational design, and deep sequencing to engineer the functional activity and specificity of TCRs on the surface of a human T cell line at high throughput. We applied TCR-Engine to successfully engineer synthetic TCRs for increased potency and specificity to a clinically relevant tumor-associated antigen (MAGE-A3) and validated their translational potential through multiple in vitro and in vivo assessments of safety and efficacy. Thus, TCR-Engine represents a valuable technology for engineering of safe and potent synthetic TCRs for immunotherapy applications.


Immunotherapy, Adoptive , Receptors, Antigen, T-Cell , Antigens, Neoplasm , Humans , Immunotherapy , Peptides
4.
Sci Rep ; 9(1): 8628, 2019 06 13.
Article En | MEDLINE | ID: mdl-31197200

CD43 (leukosialin) is a large sialoglycoprotein abundantly expressed on the surface of most cells from the hematopoietic lineage. CD43 is directly involved in the contact between cells participating in a series of events such as signaling, adherence and host parasite interactions. In this study we examined the role of CD43 in the immune response against Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, a potential life-threatening illness endemic in 21 Latin American countries according to the WHO. The acute stage of infection is marked by intense parasitemia and cardiac tissue parasitism, resulting in the recruitment of inflammatory cells and acute damage to the heart tissue. We show here that CD43-/- mice were more resistant to infection due to increased cytotoxicity of antigen specific CD8+ T cells and reduced inflammatory infiltration in the cardiac tissue, both contributing to lower cardiomyocyte damage. In addition, we demonstrate that the induction of acute myocarditis involves the engagement of CD43 cytoplasmic tripeptide sequence KRR to ezrin-radixin-moiesin cytoskeletal proteins. Together, our results show the participation of CD43 in different events involved in the pathogenesis of T. cruzi infection, contributing to a better overall understanding of the mechanisms underlying the pathogenesis of acute chagasic cardiomyopathy.


Chagas Disease/metabolism , Inflammation/pathology , Leukosialin/metabolism , Myocardium/pathology , Animals , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation , Chagas Disease/immunology , Chagas Disease/pathology , Cytotoxicity, Immunologic , Disease Susceptibility , Male , Mice, Inbred C57BL , Mutation/genetics , Myocarditis/immunology , Myocarditis/parasitology , Myocarditis/pathology , Parasitemia/immunology , Phagocytes/pathology , Spleen/immunology , Survival Analysis
5.
Pharmacol Res ; 146: 104285, 2019 08.
Article En | MEDLINE | ID: mdl-31132403

Tumors are formed by several cell types interacting in a complex environment of soluble and matrix molecules. The crosstalk between the cells and extracellular components control tumor fate. Macrophages are highly plastic and diverse immune cells that are known to be key regulators of this complex network, which is mostly because they can adjust their metabolism and reprogram their phenotype and effector function. Here, we review the studies that disclose the central role of metabolism and tumor microenvironment in shaping the phenotype and function of macrophages, highlighting the importance of the hexosamine biosynthetic pathway. We further discuss growing evidence of nutrient-sensitive protein modifications such as O-GlcNAcylation and extracellular glycosylation in the function and polarization of tumor-associated macrophages.


Macrophages/immunology , Macrophages/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Animals , Glycosylation , Humans , Phenotype
6.
Front Oncol ; 5: 138, 2015.
Article En | MEDLINE | ID: mdl-26161361

Cancer cells depend on altered metabolism and nutrient uptake to generate and keep the malignant phenotype. The hexosamine biosynthetic pathway is a branch of glucose metabolism that produces UDP-GlcNAc and its derivatives, UDP-GalNAc and CMP-Neu5Ac and donor substrates used in the production of glycoproteins and glycolipids. Growing evidence demonstrates that alteration of the pool of activated substrates might lead to different glycosylation and cell signaling. It is already well established that aberrant glycosylation can modulate tumor growth and malignant transformation in different cancer types. Therefore, biosynthetic machinery involved in the assembly of aberrant glycans are becoming prominent targets for anti-tumor drugs. This review describes three classes of glycosylation, O-GlcNAcylation, N-linked, and mucin type O-linked glycosylation, involved in tumor progression, their biosynthesis and highlights the available inhibitors as potential anti-tumor drugs.

7.
Parasit Vectors ; 8: 111, 2015 Feb 19.
Article En | MEDLINE | ID: mdl-25874567

BACKGROUND: Leishmaniasis is a neglected vector-borne tropical disease caused by Leishmania protozoa that are transmitted to mammalian hosts by infected sand flies. Infection is associated with distinct clinical manifestations that include cutaneous, mucocutaneous and visceral lesions. Visceral leishmaniasis (VL) is the most severe form of the disease and is considered second in terms of mortality and fourth in terms of morbidity among tropical diseases. IFN-γ-producing T cells are involved in protection against the disease. METHODS: CD43⁺/⁺ and CD43⁻/⁻ mice on a C57BL/6 background were intravenously injected with 5 × 10 7 amastigotes of Leishmania (L.) infantum chagasi, and 30 days after infection the clinical signs of disease were examined; the splenocytes were isolated and assayed for cytokine production; and the livers were removed for phenotypic analysis of T cell subsets by flow cytometry. RESULTS: We report that mice lacking CD43 display increased susceptibility to infection by Leishmania (L.) infantum chagasi, with higher parasite burdens than wild-type mice. The increased susceptibility of CD43⁻/⁻ mice were associated with a weakened delayed hypersensitivity response and reduced levels of IgG2a antibodies to leishmania antigens. We further showed that expression of CD43 defines a major intrahepatic CD4⁺ and CD8⁺ T cell subsets with pro-inflammatory phenotypes and leads to increased levels of IFN-γ secretion by activated splenocytes. CONCLUSIONS: Our findings point to a role of CD43 in the development of host resistance to visceral leishmaniasis.


Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leukosialin/immunology , Psychodidae/parasitology , T-Lymphocyte Subsets/immunology , Animals , Cytokines/genetics , Disease Susceptibility , Female , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred C57BL
8.
Glycobiology ; 24(5): 458-68, 2014 May.
Article En | MEDLINE | ID: mdl-24578376

Induced pluripotent stem (iPS) cells are somatic cells that have been reprogrammed to a pluripotent state via the introduction of defined transcription factors. Although iPS is a potentially valuable resource for regenerative medicine and drug development, several issues regarding their pluripotency, differentiation propensity and potential for tumorigenesis remain to be elucidated. Analysis of cell surface glycans has arisen as an interesting tool for the characterization of iPS. An appropriate characterization of glycan surface molecules of human embryonic stem (hES) cells and iPS cells might generate crucial data to highlight their role in the acquisition and maintenance of pluripotency. In this study, we characterized the surface glycans of iPS generated from menstrual blood-derived mesenchymal cells (iPS-MBMC). We demonstrated that, upon spontaneous differentiation, iPS-MBMC present high amounts of terminal ß-galactopyranoside residues, pointing to an important role of terminal-linked sialic acids in pluripotency maintenance. The removal of sialic acids by neuraminidase induces iPS-MBMC and hES cells differentiation, prompting an ectoderm commitment. Exposed ß-galactopyranose residues might be recognized by carbohydrate-binding molecules found on the cell surface, which could modulate intercellular or intracellular interactions. Together, our results point for the first time to the involvement of the presence of terminal sialic acid in the maintenance of embryonic stem cell pluripotency and, therefore, the modulation of sialic acid biosynthesis emerges as a mechanism that may govern stem cell differentiation.


Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Membrane Glycoproteins/metabolism , Cell Line , Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , N-Acetylneuraminic Acid/metabolism
...