Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Viruses ; 16(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38932253

RESUMEN

Recently, a multiplex PCR-based titration (MPBT) assay was developed for simultaneous determination of infectious titers of all three Sabin strains of the oral poliovirus vaccine (OPV) to replace the conventional CCID50 assay, which is both time-consuming and laborious. The MPBT assay was shown to be reproducible, robust and sensitive. The conventional and MPBT assays showed similar results and sensitivity. The MPBT assay can be completed in two to three days, instead of ten days for the conventional assay. To prevent attenuated vaccine strains of poliovirus from reversion to virulence, a novel, genetically stable OPV (nOPV) was developed by modifying the genomes of conventional Sabin strains used in OPV. In this work, we evaluated the MPBT assay as a rapid screening tool to support trivalent nOPV (tnOPV) formulation development by simultaneous titration of the three nOPV strains to confirm stability as needed, for the selection of the lead tnOPV formulation candidate. We first assessed the ability of the MPBT assay to discriminate a 0.5 log10 titer difference by titrating the two tnOPV samples (undiluted and threefold-diluted) on the same plate. Once the assay was shown to be discriminating, we then tested different formulations of tnOPV drug products (DPs) that were subjected to different exposure times at 37 °C (untreated group and treated groups: 2 and 7 days at 37 °C), and to three freeze and thaw (FT) cycles. Final confirmation of the down selected formulation candidates was achieved by performing the conventional CCID50 assay, comparing the stability of untreated and treated groups and FT stability testing on the top three candidates. The results showed that the MPBT assay generates similar titers as the conventional assay. By testing two trivalent samples in the same plate, the assay can differentiate a 0.5 log10 difference between the titers of the tested nOPV samples. Also, the assay was able to detect the gradual degradation of nOPV viruses with different formulation compositions and under different time/temperature conditions and freeze/thaw cycles. We found that there were three tnOPV formulations which met the stability criteria of less than 0.5 log10 loss after 2 days' exposure to 37 ℃ and after three FT cycles, maintaining the potency of all three serotypes in these formulations. The ability of the MPBT assay to titrate two tnOPV lots (six viruses) in the same plate makes it cheaper and gives it a higher throughput for rapid screening. The assay detected the gradual degradation of the tnOPV and was successful in the selection of optimal formulations for the tnOPV. The results demonstrated that the MPBT method can be used as a stability indicating assay to assess the thermal stability of the nOPV. It can be used for rapid virus titer determination during the vaccine manufacturing process, and in clinical trials. The MPBT assay can be automated and applied for other viruses, including those with no cytopathic effect.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex , Vacuna Antipolio Oral , Poliovirus , Poliovirus/genética , Humanos , Reacción en Cadena de la Polimerasa Multiplex/métodos , Poliomielitis/prevención & control , Poliomielitis/virología , Vacunas Atenuadas/inmunología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
2.
Vaccines (Basel) ; 11(11)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38006061

RESUMEN

Recently, genetically stable novel OPVs (nOPV) were developed by modifying the genomes of Sabin viruses of conventional OPVs to reduce the risk of reversion to neurovirulence and therefore the risk of generating circulating vaccine-derived polioviruses. There is a need for specific and sensitive methods for the identification and quantification of nOPV viruses individually and in mixtures for clinical trials and potentially for manufacturing quality control and environmental surveillance. In this communication, we evaluated and improved the quantitative multiplex one-step reverse transcriptase polymerase chain reaction (qmosRT-PCR) assay for the identification and quantification of nOPV viruses in samples with different formulations and virus concentrations and in virus-spiked stool samples. The assay was able to specifically identify at least 1 log10 CCID50/mL of each serotype in the presence of the two other serotypes at high concentrations (6-7 log10 CCID50/mL) in the same sample. In addition, the lowest viral concentration that the assay was able to detect in stool samples was 17 CCID50/mL for nOPV1 and nOPV2 viruses and 6 CCID50/mL for nOPV3. We also found high correlation between the expected and observed (by qmosRT-PCR) concentrations of spiked viruses in stool samples for all three nOPV viruses, with R-squared values above 0.95. The analysis of samples collected from an nOPV2 clinical trial showed that 100% of poliovirus type 2 was detected and few samples showed the presence of type 1 and 3 residuals from previous vaccinations with bOPV (at least 4 weeks prior vaccination with nOPV2), confirming the high sensitivity of the method. The qmosRT-PCR was specific and sensitive for the simultaneous identification and quantification of all three nOPV viruses. It can be used as an identity test during the nOPV manufacturing process and in evaluation of virus excretion in nOPV clinical trials.

3.
Acta Crystallogr A Found Adv ; 79(Pt 1): 14-19, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601759

RESUMEN

The influence of a temperature gradient directed perpendicular to the crystal surface on the diffraction focusing of a spherical X-ray wave in a superlattice is studied for the Laue geometry. It is shown that different satellites can be focused on the exit surface of the crystal by a smooth change in the gradient value, which can become the basis for the experimental determination of the structure factor of the superlattice.


Asunto(s)
Difracción de Rayos X , Temperatura , Rayos X
4.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36146473

RESUMEN

Emergence of mutations is an inherent property of RNA viruses with several implications for their replication, pathogenesis, and evolutionary adaptation. Oral poliovirus vaccine (OPV), developed by Albert Sabin, is composed of live attenuated polioviruses of three serotypes that can revert to neurovirulence during replication in cell culture and in vaccine recipients. Recently, a new modified variant of Sabin 2 virus was developed by introducing changes in its genome, making it more genetically stable to prevent the reversion. The new strain was used to manufacture novel OPV2 (nOPV2), which was approved by the World Health Organization for emergency use to stop outbreaks caused by circulating vaccine-derived poliovirus (cVDPV2). Manufacture of this improved vaccine requires close attention to the genetic heterogenicity to ensure that the levels of the undesirable mutations are limited. Preliminary studies using whole-genome Illumina sequencing (NGS) identified several genomic sites where mutations tend to occur with regularity. They include VP1-I143T amino acid change at the secondary attenuation site; VP1-N171D, a substitution that modestly increases neurovirulence in mice; and VP1-E295K, which may reduce the immunogenicity of the nOPV2. Therefore, to ensure the molecular consistency of vaccine batches, the content of these mutants must be quantified and kept within specifications. To do this, we have developed quantitative, multiplex, one-step reverse-transcriptase polymerase chain reactions (qmosRT-PCRs) as simple methods for quantification of these mutations. Each method uses specific short TaqMan probes with different dyes for the analysis of both mutants and non-mutants in the same sample. The quantification is done using calibration curves developed using validated reference materials. To evaluate the sensitivity and the linearity of the qmosRT-PCR method, the mutant viruses were spiked in non-mutant viruses, and nOPV2 batches were used to validate the method. The spiked samples and the nOPV2 batches were analyzed by qmosRT-PCR and NGS assays. The results showed that qmosRT-PCR is sensitive enough to detect around 1% of mutants. The percentages of mutants determined by qmosRT-PCR correlate well with the results of the NGS. Further, the analysis of the nOPV2 batches showed that the results of qmosRT-PCR correlated well with the results of NGS. In conclusion, the qmosRT-PCR is a specific, sensitive, and linear method. It could be used for quality control of the nOPV2 batches.

5.
Vaccines (Basel) ; 9(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201447

RESUMEN

To control circulating vaccine-derived type 2 poliovirus outbreaks, a more genetically stable novel Oral Poliovirus Vaccine type 2 (nOPV2) was developed by targeted modifications of Sabin 2 genome. Since the use of OPV2 made of Sabin 2 strain has been stopped, it is important to exclude the possibility that batches of nOPV2 are contaminated with Sabin 2 virus. Here, we report the development of a simple quantitative one-step reverse-transcription polymerase chain reaction assay for the detection and quantitation of Sabin 2 virus in the presence of overwhelming amounts of nOPV2 strain. The method is specific and linear within 8 log10 range even in the presence of relevant amounts of nOPV2 virus. It is sensitive, with a lower limit of detection of 0.2 CCID50/mL (an equivalent of 198 genome copies per mL), and generates reproducible results. This assay can be used for quality control and lot release of the nOPV2.

6.
Vaccine X ; 8: 100102, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34195600

RESUMEN

A novel, genetically-stabilized type 2 oral polio vaccine (nOPV2), developed to assist in the global polio eradication program, was recently the first-ever vaccine granted Emergency Use Listing by the WHO. Lot release tests for this vaccine included-for the first time to our knowledge-the assessment of genetic heterogeneity using next-generation sequencing (NGS). NGS ensures that the genetically-modified regions of the vaccine virus genome remain as designed and that levels of polymorphisms which may impact safety or efficacy are controlled during routine production. The variants present in nOPV2 lots were first assessed for temperature sensitivity and neurovirulence using molecular clones to inform which polymorphisms warranted formal evaluation during lot release. The novel use of NGS as a lot release test required formal validation of the method. Analysis of an nOPV2 lot spiked with the parental Sabin-2 strain enabled performance characteristics of the method to be assessed simultaneously at over 40 positions in the genome. These characteristics included repeatability and intermediate precision of polymorphism measurement, linearity of both spike-induced and nOPV2 lot-specific polymorphisms, and the limit-of-detection of spike-induced polymorphisms. The performance characteristics of the method met pre-defined criteria for 34 spike-induced polymorphic sites and 8 polymorphisms associated with the nOPV2 preparation; these sites collectively spanned most of the viral genome. Finally, the co-location of variants of interest on genomes was evaluated, with implications for the interpretation of NGS discussed.

7.
PLoS One ; 15(9): e0239015, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925936

RESUMEN

Understanding the extent and limitation of viral genome evolution can provide insight about potential drug and vaccine targets. Influenza B Viruses (IBVs) infect humans in a seasonal manner and causes significant morbidity and mortality. IBVs are negative-sense single-stranded RNA viruses with a segmented genome and can be divided into two antigenically distinct lineages. The two lineages have been circulating and further evolving for almost four decades. The immune response to IBV infection can lead to antibodies that target the strain causing the infection. Some antibodies are cross-reactive and are able to bind strains from both lineages but, because of antigenic drift and immunodominance, both lineages continue to evolve and challenge human health. Here we investigate changes in the genomes of an IBVs from each lineage after passage in tissue culture in the presence of human sera containing polyclonal antibodies directed toward antigenically and temporally distinct viruses. Our previous analysis of the fourth segment, which encodes the major surface protein HA, revealed a pattern of change in which signature sequences from one lineage mutated to the signature sequences of the other lineage. Here we analyze genes from the other genomic segments and observe that most of the quasispecies' heterogeneity occurs at the same loci in each lineage. The nature of the variants at these loci are investigated and possible reasons for this pattern are discussed. This work expands our understanding of the extent and limitations of genomic change in IBV.


Asunto(s)
Variación Antigénica/genética , Epítopos/genética , Virus de la Influenza B/genética , Animales , Anticuerpos Antivirales/sangre , Perros , Genoma Viral/genética , Genómica , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Virus de la Influenza B/crecimiento & desarrollo , Gripe Humana/virología , Células de Riñón Canino Madin Darby
8.
Vaccines (Basel) ; 8(1)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32150852

RESUMEN

Determination of poliovirus-neutralizing antibodies is an important part of clinical studies of poliovirus vaccines, epidemiological surveillance and seroprevalence studies that are crucial for global polio eradication campaigns. The conventional neutralization test is based on inhibition of cytopathic effect caused by poliovirus by serial dilutions of test serum. It is laborious, time-consuming and not suitable for large scale analysis. To overcome these limitations, a multiplex PCR-based neutralization (MPBN) assay was developed to measure the neutralizing antibody titers of anti-poliovirus sera against three serotypes of the virus in the same reaction and in shorter time. All three anti-poliovirus sera types were analyzed in a single assay. The MPBN assay was reproducible, robust and sensitive. Its lower limits of titration for the three anti-poliovirus sera types were within range of 0.76-1.64 per mL. Different anti-poliovirus sera were tested with conventional and MPBN assays; the results obtained by both methods correlated well and generated similar results. The MPBN is the first neutralization assay that specifically titrates anti-poliovirus antibodies against the three serotypes of the virus in the same reaction; it can be completed in two to three days instead of ten days for the conventional assay and can be automated for high-throughput implementation.

9.
Vaccines (Basel) ; 8(1)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168968

RESUMEN

Mutations arise in the genomes of progeny viruses during infection. Mutations that occur in epitopes targeted by host antibodies allow the progeny virus to escape the host adaptive, B-cell mediated antibody immune response. Major epitopes have been identified in influenza B virus (IBV) hemagglutinin (HA) protein. However, IBV strains maintain a seasonal presence in the human population and changes in IBV genomes in response to immune pressure are not well characterized. There are two lineages of IBV that have circulated in the human population since the 1980s, B-Victoria and B-Yamagata. It is hypothesized that early exposure to one influenza subtype leads to immunodominance. Subsequent seasonal vaccination or exposure to new subtypes may modify subsequent immune responses, which, in turn, results in selection of escape mutations in the viral genome. Here we show that while some mutations do occur in known epitopes suggesting antibody escape, many mutations occur in other parts of the HA protein. Analysis of mutations outside of the known epitopes revealed that these mutations occurred at the same amino acid position in viruses from each of the two IBV lineages. Interestingly, where the amino acid sequence differed between viruses from each lineage, reciprocal amino acid changes were observed. That is, the virus from the Yamagata lineage become more like the Victoria lineage virus and vice versa. Our results suggest that some IBV HA sequences are constrained to specific amino acid codons when viruses are cultured in the presence of antibodies. Some changes to the known antigenic regions may also be restricted in a lineage-dependent manner. Questions remain regarding the mechanisms underlying these results. The presence of amino acid residues that are constrained within the HA may provide a new target for universal vaccines for IBV.

10.
Virol J ; 16(1): 122, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660997

RESUMEN

BACKGROUND: Conventional assays to titrate polioviruses usually test serial dilutions inoculated into replicate cell cultures to determine a 50% cytopathic endpoint, a process that is both time-consuming and laborious. Such a method is still used to measure potency of live Oral Poliovirus Vaccine during vaccine development and production and in some clinical trials. However, the conventional method is not suited to identify and titrate virus in the large numbers of fecal samples generated during clinical trials. Determining titers of each of the three Sabin strains co-existing in Oral Poliovirus Vaccine presents an additional challenge. RESULTS: A new assay using quantitative multiplex polymerase chain reaction as an endpoint instead of cytopathic effect was developed to overcome these limitations. In the multiplex polymerase chain reaction-based titration assay, cell cultures were infected with serial dilutions of test samples, lysed after two-day incubation, and subjected to a quantitative multiplex one-step reverse-transcriptase polymerase chain reaction. All three serotypes of poliovirus were identified in single samples and titers calculated. The multiplex polymerase chain reaction-based titration assay was reproducible, robust and sensitive. Its lower limits of titration for three Sabin strains were 1-5 cell culture 50% infectious doses per ml. We prepared different combinations of three Sabin strains and compared titers obtained with conventional and multiplex polymerase chain reaction-based titration assays. Results of the two assays correlated well and showed similar results and sensitivity. Multiplex polymerase chain reaction-based titration assay was completed in two to 3 days instead of 10 days for the conventional assay. CONCLUSIONS: The multiplex polymerase chain reaction-based titration (MPBT) is the first quantitative assay that identifies and titrates each of several different infectious viruses simultaneously in a mixture. It is suitable to identify and titrate polioviruses rapidly during the vaccine manufacturing process as a quality control test, in large clinical trials of vaccines, and for environmental surveillance of polioviruses. The MPBT assay can be automated for high-throughput implementation and applied for other viruses including those with no cytopathic effect.


Asunto(s)
Técnicas Microbiológicas/métodos , Reacción en Cadena de la Polimerasa Multiplex/normas , Poliomielitis/virología , Vacuna Antipolio Oral/aislamiento & purificación , Línea Celular Tumoral , Heces/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas Microbiológicas/normas , Poliovirus/genética , Poliovirus/aislamiento & purificación , Vacuna Antipolio Oral/genética , ARN Viral/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Serogrupo , Ensayo de Placa Viral , Esparcimiento de Virus
11.
Biologicals ; 55: 63-70, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29941334

RESUMEN

Bovine viral diarrhoea virus (BVDV) is a cattle pathogen that has previously been reported to be present in bovine raw materials used in the manufacture of biological products for human use. Seven lots of trivalent measles, mumps and rubella (MMR) vaccine and 1 lot of measles vaccine from the same manufacturer, together with 17 lots of foetal bovine serum (FBS) from different vendors, 4 lots of horse serum, 2 lots of bovine trypsin and 5 lots of porcine trypsin were analysed for BVDV using recently developed techniques, including PCR assays for BVDV detection, a qRT-PCR and immunofluorescence-based virus replication assays, and deep sequencing to identify and genotype BVDV genomes. All FBS lots and one lot of bovine-derived trypsin were PCR-positive for the presence of BVDV genome; in contrast all vaccine lots and the other samples were negative. qRT-PCR based virus replication assay and immunofluorescence-based infection assay detected no infectious BVDV in the PCR-positive samples. Complete BVDV genomes were generated from FBS samples by deep sequencing, and all were BVDV type 1. These data confirmed that BVDV nucleic acid may be present in bovine-derived raw materials, but no infectious virus or genomic RNA was detected in the final vaccine products.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1/genética , Genoma Viral , Vacuna contra el Sarampión-Parotiditis-Rubéola , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Suero/virología , Animales , Bovinos , Humanos
12.
J Virol Methods ; 259: 74-80, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29920299

RESUMEN

An improved quantitative multiplex one-step RT-PCR (qmosRT-PCR) for simultaneous identification and quantitation of all three serotypes of poliovirus is described. It is based on using serotype-specific primers and fluorescent TaqMan oligonucleotide probes. The assay can be used for high-throughput screening of samples for the presence of poliovirus, poliovirus surveillance and for evaluation of virus shedding by vaccine recipients in clinical trials to assess mucosal immunity. It could replace conventional methods based on cell culture virus isolation followed by serotyping. The assay takes only few hours, and was found to be simple, specific, sensitive and has large quantitative linearity range. In addition, the method could be used as readout in PCR-based poliovirus titration and neutralization assays.


Asunto(s)
Microbiología Ambiental , Técnicas de Diagnóstico Molecular/métodos , Poliomielitis/diagnóstico , Poliovirus/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Cartilla de ADN/genética , Tamizaje Masivo/métodos , Sondas de Oligonucleótidos/genética , Poliomielitis/virología , Sensibilidad y Especificidad , Factores de Tiempo
13.
mBio ; 7(4)2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27555311

RESUMEN

UNLABELLED: An arthropod-borne virus, Zika virus (ZIKV), has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. Here, we describe the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil. The cDNA-derived ZIKV replicated efficiently in a variety of cell lines, including those of both neuronal and placental origin. We observed that the growth of cDNA-derived virus was attenuated compared to the growth of the parental isolate in most cell lines, which correlates with substantial differences in sequence heterogeneity between these viruses that were determined by deep-sequencing analysis. Our findings support the role of genetic diversity in maintaining the replicative fitness of viral populations under changing conditions. Moreover, these results indicate that caution should be exercised when interpreting the results of reverse-genetics experiments in attempts to accurately predict the biology of natural viruses. Finally, a Vero cell-adapted cDNA clone of ZIKV was generated that can be used as a convenient platform for studies aimed at the development of ZIKV vaccines and therapeutics. IMPORTANCE: The availability of genetic tools and laboratory models determines the progress in understanding mechanisms of virus emergence and pathogenesis. Recent large-scale outbreaks of Zika virus (ZIKV) that were linked to complications during perinatal development and Guillain-Barré syndrome in adults emphasize the urgency for the development of a reverse-genetics system based on an epidemic ZIKV strain. Here, we report a stable infectious cDNA clone for ZIKV isolated during the 2015 epidemic in Brazil, as well as a Vero cell-adapted version of it, which will be used for virus-host interaction studies and vaccine development.


Asunto(s)
Clonación Molecular , Genética Inversa/métodos , Virología/métodos , Infección por el Virus Zika/virología , Virus Zika/crecimiento & desarrollo , Virus Zika/genética , Brasil/epidemiología , Línea Celular , ADN Complementario/genética , ADN Viral/genética , Brotes de Enfermedades , Interacciones Huésped-Patógeno , Humanos , Vacunas Virales/inmunología , Vacunas Virales/aislamiento & purificación , Cultivo de Virus , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...