Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 696: 149473, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241814

RESUMEN

The saliva of the medicinal leech contains various anticoagulants. Some of them, such as hirudin, are well known. However, it is reasonable to believe that not all anticoagulant proteins from medicinal leech saliva have been identified. We previously performed a comprehensive study of the transcriptome, genome, and proteome of leech salivary gland cells, which led to the discovery of several previously unknown hypothetical proteins that may have anticoagulant properties. Subsequently, we obtained a series of recombinant proteins and investigated their impact on coagulation in in vitro assays. We identified a previously undescribed protein that exhibited a high ability to suppress coagulation. The His-tagged recombinant protein was expressed in Escherichia coli and purified using metal chelate chromatography. To determine its activity, commonly used coagulation methods were used: activated partial thromboplastin time, prothrombin time, and thrombin inhibition clotting assay. Clotting and chromogenic assays for factor Xa inhibition were performed to evaluate anti-Xa activity. We used recombinant hirudin as a control anticoagulant protein in all experiments. The new protein showed significantly greater inhibition of coagulation than hirudin at the same molar concentrations in the activated partial thrombin time assay. However, hirudin demonstrated better results in the direct thrombin inhibition test, although the tested protein also exhibited the ability to inhibit thrombin. The chromogenic analysis of factor Xa inhibition revealed no activity, whereas the clotting test for factor Xa showed the opposite result. Thus, a new powerful anticoagulant protein has been discovered in the medicinal leech. This protein is homologous to antistatin, with 28 % identical amino acid residues. The recombinant protein was expressed in E. coli. This protein is capable of directly inhibiting thrombin, and based on indirect evidence, other proteases of the blood coagulation cascade have been identified.


Asunto(s)
Anticoagulantes , Hirudinas , Anticoagulantes/farmacología , Hirudinas/farmacología , Hirudinas/genética , Hirudinas/metabolismo , Trombina/metabolismo , Factor Xa , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo
2.
Arch Biochem Biophys ; 752: 109843, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38072298

RESUMEN

Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.


Asunto(s)
COVID-19 , Nanoestructuras , Animales , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas Amiloidogénicas
3.
Biochemistry (Mosc) ; 88(9): 1318-1325, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37770398

RESUMEN

Recombinant proteins produced in Escherichia coli are often contaminated with endotoxins, which can be a serious problem for their further application. One of the possible solutions is the use of modified strains with reduced lipopolysaccharide (LPS) levels. We compared two approaches to engineering such strains. The first commonly known approach was modification of LPS biosynthesis pathway by knocking out seven genes in the E. coli genome. The second approach, which has not been previously used, was to increase expression of E. coli protein YciM. According to the published data, elevated expression of YciM leads to the reduction in the amount of the LpxC enzyme involved in LPS biosynthesis. We investigated the impact of YciM coexpression with eGFP on the content of endotoxins in the purified recombinant eGFP samples. Both approaches provided similar outcomes, i.e., decreased the endotoxin levels in the purified protein samples.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Regulación hacia Arriba , Endotoxinas/genética , Endotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de la Membrana/metabolismo
4.
Biochemistry (Mosc) ; 88(5): 640-654, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331710

RESUMEN

Structure and function of bacterial nucleoid is controlled by the nucleoid-associated proteins (NAP). In any phase of growth, various NAPs, acting sequentially, condense nucleoid and facilitate formation of its transcriptionally active structure. However, in the late stationary phase, only one of the NAPs, Dps protein, is strongly expressed, and DNA-protein crystals are formed that transform nucleoid into a static, transcriptionally inactive structure, effectively protected from the external influences. Discovery of crystal structures in living cells and association of this phenomenon with the bacterial resistance to antibiotics has aroused great interest in studying this phenomenon. The aim of this work is to obtain and compare structures of two related NAPs (HU and IHF), since they are the ones that accumulate in the cell at the late stationary stage of growth, which precedes formation of the protective DNA-Dps crystalline complex. For structural studies, two complementary methods were used in the work: small-angle X-ray scattering (SAXS) as the main method for studying structure of proteins in solution, and dynamic light scattering as a complementary one. To interpret the SAXS data, various approaches and computer programs were used (in particular, the evaluation of structural invariants, rigid body modeling and equilibrium mixture analysis in terms of the volume fractions of its components were applied), which made it possible to determine macromolecular characteristics and obtain reliable 3D structural models of various oligomeric forms of HU and IHF proteins with ~2 nm resolution typical for SAXS. It was shown that these proteins oligomerize in solution to varying degrees, and IHF is characterized by the presence of large oligomers consisting of initial dimers arranged in a chain. An analysis of the experimental and published data made it possible to hypothesize that just before the Dps expression, it is IHF that forms toroidal structures previously observed in vivo and prepares the platform for formation of DNA-Dps crystals. The results obtained are necessary for further investigation of the phenomenon of biocrystal formation in bacterial cells and finding ways to overcome resistance of various pathogens to external conditions.


Asunto(s)
Proteínas de Unión al ADN , Hidrodinámica , Proteínas de Unión al ADN/metabolismo , Dispersión del Ángulo Pequeño , ADN Bacteriano/metabolismo , Difracción de Rayos X , Proteínas Bacterianas/metabolismo , ADN
5.
Sci Rep ; 13(1): 6641, 2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-37095116

RESUMEN

Destabilase from the medical leech Hirudo medicinalis belongs to the family of i-type lysozymes. It has two different enzymatic activities: microbial cell walls destruction (muramidase activity), and dissolution of the stabilized fibrin (isopeptidase activity). Both activities are known to be inhibited by sodium chloride at near physiological concentrations, but the structural basis remains unknown. Here we present two crystal structures of destabilase, including a 1.1 Å-resolution structure in complex with sodium ion. Our structures reveal the location of sodium ion between Glu34/Asp46 residues, which were previously recognized as a glycosidase active site. While sodium coordination with these amino acids may explain inhibition of the muramidase activity, its influence on previously suggested Ser49/Lys58 isopeptidase activity dyad is unclear. We revise the Ser49/Lys58 hypothesis and compare sequences of i-type lysozymes with confirmed destabilase activity. We suggest that the general base for the isopeptidase activity is His112 rather than Lys58. pKa calculations of these amino acids, assessed through the 1 µs molecular dynamics simulation, confirm the hypothesis. Our findings highlight the ambiguity of destabilase catalytic residues identification and build foundations for further research of structure-activity relationship of isopeptidase activity as well as structure-based protein design for potential anticoagulant drug development.


Asunto(s)
Hirudo medicinalis , Sanguijuelas , Animales , Hirudo medicinalis/química , Muramidasa/química , Endopeptidasas/metabolismo , Sanguijuelas/metabolismo , Fibrinolíticos/uso terapéutico
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36835449

RESUMEN

In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage's ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly.


Asunto(s)
Bacteriófagos , Podoviridae , Bacteriófagos/genética , Klebsiella pneumoniae/genética , Filogenia , Genoma Viral , Podoviridae/genética , Proteínas Recombinantes/genética
7.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499608

RESUMEN

The life cycle of severe acute respiratory syndrome coronavirus 2 includes several steps that are supposedly mediated by liquid-liquid phase separation (LLPS) of the viral nucleocapsid protein (N) and genomic RNA. To facilitate the rational design of LLPS-targeting therapeutics, we modeled N-RNA biomolecular condensates in vitro and analyzed their sensitivity to several small-molecule antivirals. The model condensates were obtained and visualized under physiological conditions using an optimized RNA sequence enriched with N-binding motifs. The antivirals were selected based on their presumed ability to compete with RNA for specific N sites or interfere with non-specific pi-pi/cation-pi interactions. The set of antivirals included fleximers, 5'-norcarbocyclic nucleoside analogs, and perylene-harboring nucleoside analogs as well as non-nucleoside amphiphilic and hydrophobic perylene derivatives. Most of these antivirals enhanced the formation of N-RNA condensates. Hydrophobic perylene derivatives and 5'-norcarbocyclic derivatives caused up to 50-fold and 15-fold enhancement, respectively. Molecular modeling data argue that hydrophobic compounds do not hamper specific N-RNA interactions and may promote non-specific ones. These findings shed light on the determinants of potent small-molecule modulators of viral LLPS.


Asunto(s)
COVID-19 , Perileno , Humanos , SARS-CoV-2/fisiología , Nucleósidos/farmacología , ARN , Perileno/farmacología , Antivirales/farmacología
8.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-36362010

RESUMEN

Mutations in surface proteins enable emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to escape a substantial fraction of neutralizing antibodies and may thus weaken vaccine-driven immunity. To compare available vaccines and justify revaccination, rapid evaluation of antibody (Ab) responses to currently circulating SARS-CoV-2 variants of interest (VOI) and concern (VOC) is needed. Here, we developed a multiplex protein microarray-based system for rapid profiling of anti-SARS-CoV-2 Ab levels in human sera. The microarray system was validated using sera samples from SARS-CoV-2-free donors and those diagnosed with COVID-19 based on PCR and enzyme immunoassays. Microarray-based profiling of vaccinated donors revealed a substantial difference in anti-VOC Ab levels elicited by the replication-deficient adenovirus vector-base (Sputnik V) and whole-virion (CoviVac Russia COVID-19) vaccines. Whole-virion vaccine-induced Abs showed minor but statistically significant cross-reactivity with the human blood coagulation factor 1 (fibrinogen) and thrombin. However, their effects on blood clotting were negligible, according to thrombin time tests, providing evidence against the concept of pronounced cross-reactivity-related side effects of the vaccine. Importantly, all samples were collected in the pre-Omicron period but showed noticeable responses to the receptor-binding domain (RBD) of the Omicron spike protein. Thus, using the new express Ab-profiling system, we confirmed the inter-variant cross-reactivity of the anti-SARS-CoV-2 Abs and demonstrated the relative potency of the vaccines against new VOCs.


Asunto(s)
Formación de Anticuerpos , Vacunas contra la COVID-19 , Humanos , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos/genética , COVID-19/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Vacunación , Vacunas Virales/genética , Vacunas Virales/farmacología , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/farmacología , Análisis por Micromatrices
9.
Viruses ; 14(6)2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35746613

RESUMEN

COVID-19 caused by SARS-CoV-2 is continuing to spread around the world and drastically affect our daily life. New strains appear, and the severity of the course of the disease itself seems to be decreasing, but even people who have been ill on an outpatient basis suffer post-COVID consequences. Partly, it is associated with the autoimmune reactions, so debates about the development of new vaccines and the need for vaccination/revaccination continue. In this study we performed an analysis of the antibody response of patients with COVID-19 to linear and conformational epitopes of viral proteins using ELISA, chip array and western blot with analysis of correlations between antibody titer, disease severity, and complications. We have shown that the presence of IgG antibodies to the nucleoprotein can deteriorate the course of the disease, induce multiple direct COVID-19 symptoms, and contribute to long-term post-covid symptoms. We analyzed the cross reactivity of antibodies to SARS-CoV-2 with own human proteins and showed that antibodies to the nucleocapsid protein can bind to human proteins. In accordance with the possibility of HLA presentation, the main possible targets of the autoantibodies were identified. People with HLA alleles A01:01; A26:01; B39:01; B15:01 are most susceptible to the development of autoimmune processes after COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/complicaciones , Humanos , Nucleoproteínas , Glicoproteína de la Espiga del Coronavirus , Síndrome Post Agudo de COVID-19
10.
Viruses ; 14(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35632644

RESUMEN

Background: Nanosilver possesses antiviral, antibacterial, anti-inflammatory, anti-angiogenesis, antiplatelet, and anticancer properties. The development of disinfectants, inactivated vaccines, and combined etiotropic and immunomodulation therapy against respiratory viral infections, including COVID-19, remains urgent. Aim: Our goal was to determine the SARS-CoV-2 molecular targets (genomic RNA and the structural virion proteins S and N) for silver-containing nanomaterials. Methods: SARS-CoV-2 gene cloning, purification of S2 and N recombinant proteins, viral RNA isolation from patients' blood samples, reverse transcription with quantitative real-time PCR ((RT)2-PCR), ELISA, and multiplex immunofluorescent analysis with magnetic beads (xMAP) for detection of 17 inflammation markers. Results: Fluorescent Ag nanoclusters (NCs) less than 2 nm with a few recovered silver atoms, citrate coated Ag nanoparticles (NPs) with diameters of 20-120 nm, and nanoconjugates of 50-150 nm consisting of Ag NPs with different protein envelopes were constructed from AgNO3 and analyzed by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible light absorption, and fluorescent spectroscopy. SARS-CoV-2 RNA isolated from COVID-19 patients' blood samples was completely cleaved with the artificial RNase complex compound Li+[Ag+2Cys2-(OH-)2(NH3)2] (Ag-2S), whereas other Ag-containing materials provided partial RNA degradation only. Treatment of the SARS-CoV-2 S2 and N recombinant antigens with AgNO3 and Ag NPs inhibited their binding with specific polyclonal antibodies, as shown by ELISA. Fluorescent Ag NCs with albumin or immunoglobulins, Ag-2S complex, and nanoconjugates of Ag NPs with protein shells had no effect on the interaction between coronavirus recombinant antigens and antibodies. Reduced production of a majority of the 17 inflammation biomarkers after treatment of three human cell lines with nanosilver was demonstrated by xMAP. Conclusion: The antiviral properties of the silver nanomaterials against SARS-CoV-2 coronavirus differed. The small-molecular-weight artificial RNase Ag-2S provided exhaustive RNA destruction but could not bind with the SARS-CoV-2 recombinant antigens. On the contrary, Ag+ ions and Ag NPs interacted with the SARS-CoV-2 recombinant antigens N and S but were less efficient at performing viral RNA cleavage. One should note that SARS-CoV-2 RNA was more stable than MS2 phage RNA. The isolated RNA of both the MS2 phage and SARS-CoV-2 were more degradable than the MS2 phage and coronavirus particles in patients' blood, due to the protection with structural proteins. To reduce the risk of the virus resistance, a combined treatment with Ag-2S and Ag NPs could be used. To prevent cytokine storm during the early stages of respiratory infections with RNA-containing viruses, nanoconjugates of Ag NPs with surface proteins could be recommended.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Antivirales/farmacología , Cationes , Cistina , Humanos , Inflamación , Nanoconjugados , ARN Viral/genética , Proteínas Recombinantes , Ribonucleasas , SARS-CoV-2/genética , Plata/farmacología , Virión/química
11.
Data Brief ; 40: 107770, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34977286

RESUMEN

The SARS-CoV-2 pandemic is a big challenge for humanity. The COVID-19 severity differs significantly from patient to patient, and it is important to study the factors protecting from severe forms of the disease. Respiratory microbiota may influence the patient's susceptibility to infection and disease severity due to its ability to modulate the immune system response of the host organism. This data article describes the microbiome dataset from the upper respiratory tract of SARS-CoV-2 positive patients from Russia. This dataset reports the microbial community profile of 335 human nasopharyngeal swabs collected between 2020-05 and 2021-03 during the first and the second epidemic waves. Samples were collected from both inpatients and outpatients in 4 cities of the Russian Federation (Moscow, Kazan, Irkutsk, Nizhny Novgorod) and sequenced using the 16S rRNA gene amplicon sequencing of V3-V4 region. Data contains information about the patient such as age, sex, hospitalization status, percent of damaged lung tissue, oxygen saturation (SpO2), respiratory rate, need for supplemental oxygen, chest computer tomography severity score, SARS-CoV-2 lineage, and also information about smoking and comorbidities. The amplicon sequencing data were deposited at NCBI SRA as BioProject PRJNA751478.

12.
Front Microbiol ; 12: 753760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867875

RESUMEN

The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.

13.
Curr Issues Mol Biol ; 43(3): 2068-2081, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34889897

RESUMEN

Leeches are amazing animals that can be classified as conditionally poisonous animals since the salivary cocktail they produce is injected directly into the victim, and its components have strictly defined biological purposes, such as preventing blood clot formation. Thrombolytic drugs are mainly aimed at treating newly formed blood clots. Aged clots are stabilized by a large number of isopeptide bonds that prevent the action of thrombolytics. These bonds are destroyed by destabilase, an enzyme of the leech's salivary glands. Here, we conducted a pilot study to evaluate the feasibility and effectiveness of the use of destabilase in relation to blood clots formed during real pathological processes. We evaluated the isopeptidase activity of destabilase during the formation of a stabilized fibrin clot. We showed that destabilase does not affect the internal and external coagulation cascades. We calculated the dose-response curve and tested the ability of destabilase to destroy isopeptide bonds in natural blood clots. The effect of aged and fresh clots dissolving ability after treatment with destabilase coincided with the morphological characteristics of clots during surgery. Thus, recombinant destabilase can be considered as a potential drug for the treatment of aged clots, which are difficult to treat with known thrombolytics.


Asunto(s)
Endopeptidasas/farmacología , Fibrinolíticos/farmacología , Hirudo medicinalis/enzimología , Proteínas Recombinantes/farmacología , Animales , Coagulación Sanguínea/efectos de los fármacos , Pruebas de Coagulación Sanguínea , Relación Dosis-Respuesta a Droga , Endopeptidasas/metabolismo , Activación Enzimática , Factor XIII/metabolismo , Fibrinolíticos/metabolismo , Humanos , Técnicas In Vitro , Trombosis/tratamiento farmacológico
14.
Biochimie ; 191: 27-32, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34389380

RESUMEN

In the search for anti-SARS-CoV-2 drugs, much attention is given to safe and widely available native compounds. The green tea component epigallocatechin 3 gallate (EGCG) is particularly promising because it reportedly inhibits viral replication and viral entry in vitro. However, conclusive evidence for its predominant activity is needed. We tested EGCG effects on the native virus isolated from COVID-19 patients in two independent series of experiments using VERO cells and two different treatment schemes in each series. The results confirmed modest cytotoxicity of EGCG and its substantial antiviral activity. The preincubation scheme aimed at infection prevention has proven particularly beneficial. We complemented that finding with a detailed investigation of EGCG interactions with viral S-protein subunits, including S2, RBD, and the RBD mutant harboring the N501Y mutation. Molecular modeling experiments revealed N501Y-specific stacking interactions in the RBD-ACE2 complex and provided insight into EGCG interference with the complex formation. Together, these findings provide a molecular basis for the observed EGCG effects and reinforce its prospects in COVID-19 prevention therapy.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Catequina/análogos & derivados , Mutación , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/genética , Animales , Catequina/farmacología , Chlorocebus aethiops , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , SARS-CoV-2/química , Células Vero , Proteínas Virales/química , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos
16.
Arch Virol ; 165(7): 1611-1620, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32405826

RESUMEN

Infectious bursal disease virus (IBDV), which infects young chickens, is one of the most important pathogens that harm the poultry industry. Evaluation of the immune status of birds before and after vaccination is of great importance for controlling the disease caused by this virus. Therefore, the development of low-cost and easy-to-manufacture test systems for IBDV antibody detection remains an urgent issue. In this study, three expression systems (bacteria, yeast, and human cells) were used to produce recombinant VP3 protein of IBDV. VP3 is a group-specific antigen and hence may be a good candidate for use in diagnostic tests. Comparison of the antigenic properties of the obtained polypeptides showed that the titres of antibodies raised in chickens against bacteria- or human-cell-derived recombinant VP3 were high, whereas the antibody level against yeast-derived recombinant VP3 was low. The results of an enzyme-linked immunosorbent assay (ELISA) of sera from IBDV-infected chickens demonstrated that the recombinant VP3 produced in E. coli would be the best choice for use in test systems.


Asunto(s)
Infecciones por Birnaviridae/veterinaria , Virus de la Enfermedad Infecciosa de la Bolsa/inmunología , Péptidos/inmunología , Enfermedades de las Aves de Corral/virología , Proteínas Estructurales Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Infecciones por Birnaviridae/virología , Pollos , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Escherichia coli/genética , Escherichia coli/metabolismo , Virus de la Enfermedad Infecciosa de la Bolsa/química , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Virus de la Enfermedad Infecciosa de la Bolsa/aislamiento & purificación , Péptidos/química , Péptidos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/genética
17.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349672

RESUMEN

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Asunto(s)
Genoma , Hirudo medicinalis/genética , Proteínas y Péptidos Salivales/genética , Animales , Anticoagulantes/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hirudo medicinalis/metabolismo , Sanguijuelas/clasificación , Sanguijuelas/genética , Sanguijuelas/metabolismo , Proteómica , Saliva/metabolismo , Proteínas y Péptidos Salivales/metabolismo
18.
FEBS Lett ; 593(12): 1360-1371, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31090064

RESUMEN

Under severe or prolonged stress, bacteria produce a nonspecific DNA-binding protein (Dps), which effectively protects DNA against damaging agents both in vitro and in vivo by forming intracellular biocrystals. The phenomenon of protective crystallization of DNA in living cells has been intensively investigated during the last two decades; however, the results of studies are somewhat contradictory, and up to now, there has been no direct determination of a Dps-DNA crystal structure. Here, we report the in vitro analysis of the vital process of Dps-DNA co-crystallization using two complementary structural methods: synchrotron small-angle X-ray scattering in solution and cryo-electron tomography. Importantly, for the first time, the DNA in the co-crystals was visualized, and the lattice parameters of the crystalline Dps-DNA complex were determined.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Tomografía con Microscopio Electrónico/métodos , Conformación de Ácido Nucleico , Cristalización , ADN/química , Proteínas de Unión al ADN/química , Técnicas In Vitro , Estructura Molecular , Dispersión de Radiación , Dispersión del Ángulo Pequeño
19.
Artículo en Inglés | MEDLINE | ID: mdl-30533827

RESUMEN

A novel strain of infectious bursal disease virus, named DD1, was isolated from broiler chickens in Russia in 2016. Here, we present its complete genome sequence. Nucleotide sequence analysis of both segments of the virus suggests that it belongs to a group of very virulent strains.

20.
Nucleic Acids Res ; 46(17): 8966-8977, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102362

RESUMEN

Several studies have described functional peptides encoded in RNA that are considered to be noncoding. Telomerase RNA together with telomerase reverse transcriptase and regulatory proteins make up the telomerase complex, the major component of the telomere length-maintaining machinery. In contrast to protein subunits, telomerase RNA is expressed constitutively in most somatic cells where telomerase reverse transcriptase is absent. We show here that the transcript of human telomerase RNA codes a 121 amino acid protein (hTERP). The existence of hTERP was shown by immunoblotting, immunofluorescence microscopy and mass spectroscopy. Gain-of-function and loss-of-function experiments showed that hTERP protects cells from drug-induced apoptosis and participates in the processing of autophagosome. We suggest that hTERP regulates crosstalk between autophagy and apoptosis and is involved in cellular adaptation under stress conditions.


Asunto(s)
Adaptación Fisiológica/genética , Apoptosis/genética , Autofagia/genética , ARN Mensajero/genética , ARN/genética , Telomerasa/genética , Telómero/metabolismo , Secuencia de Aminoácidos , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagia/efectos de los fármacos , Gatos , Línea Celular Tumoral , Clonación Molecular , Doxorrubicina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Caballos , Humanos , Células Jurkat , Ratones , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Estrés Fisiológico , Telomerasa/metabolismo , Telómero/química , Homeostasis del Telómero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...