Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Skin Res Technol ; 25(5): 653-661, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30932226

RESUMEN

BACKGROUND: Skin hydration is essential for maintaining stratum corneum (SC) flexibility and facilitating maturation events. Moisturizers contain multiple ingredients to maintain and improve skin hydration although a complete understanding of hydration mechanisms is lacking. The ability to differentiate the source of the hydration (water from the environment or deeper skin regions) upon application of product will aid in designing more efficacious formulations. MATERIALS AND METHODS: Novel confocal Raman microscopy (CRM) experiments allow us to investigate mechanisms and levels of hydration in the SC. Using deuterium oxide (D2 O) as a probe permits the differentiation of endogenous water (H2 O) from exogenous D2 O. Following topical application of D2 O, we first compare in vivo skin depth profiles with those obtained using ex vivo skin. Additional ex vivo experiments are conducted to quantify the kinetics of D2 O diffusion in the epidermis by introducing D2 O under the dermis. RESULTS: Relative D2 O depth profiles from in vivo and ex vivo measurements compare well considering procedural and instrumental differences. Additional in vivo experiments where D2 O was applied following topical glycerin application increased the longevity of D2 O in the SC. Reproducible rates of D2 O diffusion as a function of depth have been established for experiments where D2 O is introduced under ex vivo skin. CONCLUSION: Unique information regarding hydration mechanisms are obtained from CRM experiments using D2 O as a probe. The source and relative rates of hydration can be delineated using ex vivo skin with D2 O underneath. One can envision comparing these depth-dependent rates in the presence and absence of topically applied hydrating agents to obtain mechanistic information.


Asunto(s)
Estado de Hidratación del Organismo/fisiología , Fenómenos Fisiológicos de la Piel , Agua Corporal/fisiología , Óxido de Deuterio/farmacología , Epidermis/fisiología , Humanos , Microscopía Confocal/métodos , Espectrometría Raman/métodos , Pérdida Insensible de Agua/fisiología
2.
Artículo en Inglés | MEDLINE | ID: mdl-26170709

RESUMEN

Ceramides (CERs), structural components of the stratum corneum (SC), impart essential barrier properties to this thin outer layer of the epidermis. Variations in CER species within this layer have been linked to several skin diseases. A recent proliferation of CER-containing topical skin-care products warrants the elucidation of CER penetration profiles in both healthy and diseased skin. In the current study, the spatial distributions of CER concentration profiles, following topical application of two species of CER, were tracked using infrared imaging. Suspensions of single-chain perdeuterated sphingosine and phytosphingosine CER in oleic acid were applied, in separate experiments, to the surface of healthy intact ex vivo human skin using Franz diffusion cells. Following either a 24- or 48-hour incubation period at 34°C, infrared images were acquired from microtomed skin sections. Both CER species accumulated in glyph regions of the skin and penetrated into the SC, to a limited extent, only in these regions. The concentration profiles observed herein were independent of the CER species and incubation time utilized in the study. As a result, a very heterogeneous, sparse, spatial distribution of CERs in the SC was revealed. In contrast, oleic acid was found to be fairly homogeneously distributed throughout the SC and viable epidermis, albeit at lower concentrations in the latter. A more uniform, lateral distribution of CERs in the SC would likely be important for barrier efficacy or enhancement.

3.
Pharm Res ; 31(10): 2762-73, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24792828

RESUMEN

PURPOSE: To demonstrate the efficacy of infrared (IR) spectroscopic imaging for evaluation of lateral diffusion in stratum corneum (SC) and for elucidation of intermolecular interactions between exogenous agents and SC constituents. METHODS: In separate experiments, acyl chain perdeuterated oleic acid (OA-d) and deuterated dimethyl sulfoxide (DMSO-d) were applied to the surface of isolated human SC. The lateral distribution of permeant concentrations was monitored using the time-dependence of IR images. Diffusion coefficients (D) were estimated from Fick's second law. Interactions between the exogenous agents and the SC were tracked from changes in CD2 and Amide I stretching frequencies. RESULTS: Networked glyphs served as the major pathway for lateral distribution of OA-d. In glyph-poor regions, D values from 0.3-1 × 10(-8) cm(2)/s bracketed the OA-d data and apparently decreased with time. Although diffusion of DMSO-d is relatively fast compared to our experimental measurement time, the results suggest values of ~10(-7) cm(2)/s. OA-d spectral changes suggest penetration into the ordered lipids of the SC; DMSO-d penetration results in perturbation of SC keratin structure. CONCLUSIONS: IR imaging provides concentration profiles, diffusion coefficients, and unique molecular level information about structural changes in the endogenous SC constituents and exogenous agents upon their mutual interaction. Transport along glyphs is the dominant mode of distribution for OA-d.


Asunto(s)
Epidermis/efectos de los fármacos , Epidermis/metabolismo , Absorción Cutánea , Espectrofotometría Infrarroja , Transporte Biológico , Deuterio , Difusión , Dimetilsulfóxido/farmacocinética , Humanos , Técnicas In Vitro , Ácido Oléico/farmacocinética , Distribución Tisular
4.
J Phys Chem B ; 118(16): 4378-87, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24702264

RESUMEN

Although lipid structure in models for the stratum corneum (SC), the main barrier to skin permeability, has been extensively studied, only limited data are extant concerning the kinetic mechanism for the formation of domains, lamellar phases, and lipid packing motifs. Such information would be of substantial interest in the characterization of the effects of disease states which disrupt the barrier. Kinetic IR spectroscopy measurements probed the temporal sequence of molecular events producing ordered structures in a three-component SC model of equimolar ceramide[NS] (cer[NS]), perdeuterated stearic acid-d35 (SA-d35), and cholesterol. Samples, heated above Tm, were quenched to 31 °C, and then spectra were recorded at ∼15 min intervals for a total of 20-150 h. IR provides unique molecular structure information about headgroup H-bonding, lipid packing, and lipid chain order. The following sequence for phase separation was observed: (1) Formation of ceramide amide H-bonds from disordered forms to ordered structures (0.5-4 h); (2) appearance of ordered ceramide chains with some orthorhombically packed structures (0.5-8 h); and (3) phase separation of large orthorhombic domains of SA-d35 (4-10 h). A spinodal decomposition mechanism, defined by continuous composition changes during the phase separation, suggests a qualitative description for these events.


Asunto(s)
Modelos Moleculares , Piel/química , Animales , Bovinos , Ceramidas/química , Colesterol/química , Enlace de Hidrógeno , Cinética , Estructura Molecular , Espectrofotometría Infrarroja , Ácidos Esteáricos/química , Porcinos , Temperatura
5.
Exp Dermatol ; 23(1): 39-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24372651

RESUMEN

Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34 ). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions.


Asunto(s)
Epidermis/efectos de los fármacos , Epidermis/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Aceites de Plantas/farmacología , Adulto , Agua Corporal/efectos de los fármacos , Agua Corporal/metabolismo , Fármacos Dermatológicos/química , Fármacos Dermatológicos/farmacocinética , Fármacos Dermatológicos/farmacología , Femenino , Humanos , Técnicas In Vitro , Microespectrofotometría , Ácido Oléico/farmacocinética , Ácido Oléico/farmacología , Aceites de Plantas/química , Aceites de Plantas/farmacocinética , Absorción Cutánea/efectos de los fármacos , Absorción Cutánea/fisiología , Trioleína/farmacocinética , Trioleína/farmacología , Adulto Joven
6.
Langmuir ; 29(15): 4857-65, 2013 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-23517601

RESUMEN

Oleic acid (OA) is well-known to affect the function of the skin barrier. In this study, the molecular interactions between OA and model stratum corneum (SC) lipids consisting of ceramide, cholesterol, and palmitic acid (PA) were investigated with Langmuir monolayer and associated techniques. Mixtures with different OA/SC lipid compositions were spread at the air/water interface, and the phase behavior was tracked with surface pressure-molecular area (π-A) isotherms. With increasing OA levels in the monolayer, the films became more fluid and more compressible. The thermodynamic parameters derived from π-A isotherms indicated that there are preferential interactions between OA and SC lipids and that films of their mixtures were thermodynamically stable. The domain structure and lipid conformational order of the monolayers were studied through Brewster angle microscopy (BAM) and infrared reflection absorption spectroscopy (IRRAS), respectively. Results indicate that lower concentrations of OA preferentially mix with and disorder the ceramide-enriched domains, followed by perturbation of the PA-enriched domains and disruption of SC lipid domain separation at higher OA levels.


Asunto(s)
Ceramidas/química , Lípidos/química , Ácido Oléico/química , Aire , Colesterol/química , Ácido Palmítico/química , Tamaño de la Partícula , Propiedades de Superficie , Termodinámica , Agua/química
7.
Dermatol Res Pract ; 2012: 495917, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927835

RESUMEN

Surfactants in skin cleansers interact with the skin in several manners. In addition to the desired benefit of providing skin hygiene, surfactants also extract skin components during cleansing and remain in the stratum corneum (SC) after rinsing. These side effects disrupt SC structure and degrade its barrier properties. Recent applications of vibrational spectroscopy and two-photon microscopy in skin research have provided molecular-level information to facilitate our understanding of the interaction between skin and surfactant. In the arena of commercial skin cleansers, technologies have been developed to produce cleansers that both cleanse and respect skin barrier. The main approach is to minimize surfactant interaction with skin through altering its solution properties. Recently, hydrophobically modified polymers (HMPs) have been introduced to create skin compatible cleansing systems. At the presence of HMP, surfactants assemble into larger, more stable structures. These structures are less likely to penetrate the skin, thereby resulting in less aggressive cleansers and the integrity of the skin barrier is maintained. In this paper, we reviewed our recent findings on surfactant and SC interactions at molecular level and provided an overview of the HM technology for developing cleansers that respect skin barrier.

8.
Biochim Biophys Acta ; 1798(4): 788-800, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20004639

RESUMEN

Infrared reflection-absorption spectroscopy (IRRAS) of lipid/protein monolayer films in situ at the air/water interface provides unique molecular structure and orientation information from the film constituents. The technique is thus well suited for studies of lipid/protein interaction in a physiologically relevant environment. Initially, the nature of the IRRAS experiment is described and the molecular structure information that may be obtained is recapitulated. Subsequently, several types of applications, including the determination of lipid chain conformation and tilt as well as elucidation of protein secondary structure are reviewed. The current article attempts to provide the reader with an understanding of the current capabilities of IRRAS instrumentation and the type of results that have been achieved to date from IRRAS studies of lipids, proteins, and lipid/protein films of progressively increasing complexity. Finally, possible extensions of the technology are briefly considered.


Asunto(s)
Lípidos de la Membrana/química , Proteínas de la Membrana/química , Membranas Artificiales , Lípidos de la Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Estructura Molecular , Unión Proteica , Espectrofotometría Infrarroja/métodos , Propiedades de Superficie , Agua/química
9.
Biochemistry ; 47(31): 8103-13, 2008 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-18620419

RESUMEN

Effective innate host defense requires early recognition of pathogens. Surfactant protein D (SP-D), shown to play a role in host defense, binds to the lipopolysaccharide (LPS) component of Gram-negative bacterial membranes. Binding takes place via the carbohydrate recognition domain (CRD) of SP-D. Recombinant trimeric neck+CRDs (NCRD) have proven valuable in biophysical studies of specific interactions. Although X-ray crystallography has provided atomic level information on NCRD binding to carbohydrates and other ligands, molecular level information about interactions between SP-D and biological ligands under physiologically relevant conditions is lacking. Infrared reflection-absorption spectroscopy (IRRAS) provides molecular structure information from films at the air/water interface where protein adsorption to LPS monolayers serves as a model for protein-lipid interaction. In the current studies, we examine the adsorption of NCRDs to Rd 1 LPS monolayers using surface pressure measurements and IRRAS. Measurements of surface pressure, Amide I band intensities, and LPS acyl chain conformational ordering, along with the introduction of EDTA, permit discrimination of Ca (2+)-mediated binding from nonspecific protein adsorption. The findings support the concept of specific binding between the CRD and heptoses in the core region of LPS. In addition, a novel simulation method that accurately predicts the IR Amide I contour from X-ray coordinates of NCRD SP-D is applied and coupled to quantitative IRRAS equations providing information on protein orientation. Marked differences in orientation are found when the NCRD binds to LPS compared to nonspecific adsorption. The geometry suggests that all three CRDs are simultaneously bound to LPS under conditions that support the Ca (2+)-mediated interaction.


Asunto(s)
Lipopolisacáridos/metabolismo , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteínas Recombinantes/metabolismo , Espectrofotometría Infrarroja/métodos , Simulación por Computador , Cristalografía por Rayos X , Lipopolisacáridos/química , Unión Proteica , Proteína D Asociada a Surfactante Pulmonar/química , Proteína D Asociada a Surfactante Pulmonar/genética , Proteínas Recombinantes/química
10.
Langmuir ; 24(5): 2025-34, 2008 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-18198907

RESUMEN

The four-component system acyl chain perdeuterated 1,2-dipalmitoylphosphatidylcholine (DPPC)/1,2-dipalmitoylphosphatidylglycerol/ (DPPG)/pulmonary surfactant protein SP-C/cholesterol provides a useful model for in vitro biophysical studies of the reversible monolayer to multilayer transition that occurs during compression <--> expansion cycles in the lung. Monolayer films of this mixture (with chain perdeuterated DPPC-d62) at the air/water interface have been transferred to solid substrates under conditions of continuously varying surface pressure, an approach termed COVASP (continuously varying surface pressures) (Langmuir 2007, 23, 4958). The thermodynamic properties of the Langmuir films have been examined with pressure-area isotherms, while the molecular properties of the film constituents in the transferred films in the monolayer and multilayer phases have been examined with IR spectroscopy. Quantitative intensity measurements of the DPPC-d62, DPPG, and SP-C components in each phase reveal that the DPPG and SP-C constituents are relatively enriched in the multilayer compared with the DPPC-d62, although all three species are present in both phases. Some molecular structure information is available from the surface-pressure-induced variation in IR parameters. The DPPC-d62 exhibits slightly increased conformational order in the multilayer phase as detected from decreases in the CD2 stretching frequencies upon compression, while the lipid phosphate residues become dehydrated, as deduced from increases in the 1245 cm-1 symmetric PO2- stretching frequency. A small increase is observed in the protein amide I frequency; possible interpretations of these changes are presented. The current observations are compared with ideas contained in the "squeeze-out hypothesis" (Handbook of Physiology, The Respiratory System; American Physiological Society Press: Bethesda, MD, 1986; Vol. III, p 247) and in the "liquid crystalline collapse" model (Biophys. J. 2003, 84, 3792). Within the limitation of the current procedures, the data contain elements from both these descriptions of the monolayer transformation. Extensions and possible limitations of the COVASP-IR method are discussed.


Asunto(s)
Modelos Biológicos , Surfactantes Pulmonares/química , Liposomas Unilamelares/química , Colesterol/química , Membranas Artificiales , Fosfatidilcolinas/química , Fosfatidilgliceroles/química , Presión , Espectrofotometría Infrarroja , Propiedades de Superficie , Tensión Superficial
11.
Langmuir ; 23(6): 2932-6, 2007 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-17291022

RESUMEN

Cationic gemini surfactant homologues alkanediyl-alpha,omega-bis(dodecyldiethylammonium) bromide, [C12H25(CH3CH2)2N(CH2)SN(CH2CH3)2C12H25]Br2, where S = 4, 6, 8, 10, or 12, referred to as C12CSC12(Et), and cationic bolaamphiphiles BPHEAB (biphenyl-4,4'-bis(oxyhexamethylenetriethylammonium) bromide), PHEAB (phenyl-4,4'- bis(oxyhexamethylenetriethylammonium) bromide) were synthesized, and their aggregation behaviors in aqueous solution were studied and compared by means of dynamic light scattering, fluorescence entrapment, and transmission electron microscopy. Spherical vesicles were found in the aqueous solutions of these gemini and bola surfactants, which can be attributed to the increase of the hydrocarbon parts of the polar headgroup of the surfactants. In combination with the result of the other gemini with headgroup of propyl group, the increase of the hydrophobic parts of the surfactant polar headgroup will be beneficial to enhance the aggregation capability of the gemini and bola surfactants. Both of the vesicles formed in the gemini and bola systems showed good stabilities with time and temperature, but different stability with salt due to the different membrane conformations of surfactant molecules in the vesicles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA