Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Environ Microbiol Rep ; 16(2): e13250, 2024 Apr.
Article En | MEDLINE | ID: mdl-38575119

The rhizosphere and phyllosphere of plants are home to a diverse range of microorganisms that play pivotal roles in ecosystem services. Consequently, plant growth-promoting bacteria (PGPB) are extensively utilized as inoculants to enhance plant growth and boost productivity. Despite this, the interactions between the rhizosphere and phyllosphere, which are influenced by PGPB inoculation, have not been thoroughly studied to date. In this study, we inoculated Bacillus velezensis SQR9, a PGPB, into the bulk soil, rhizosphere or phyllosphere, and subsequently examined the bacterial communities in the rhizosphere and phyllosphere using amplicon sequencing. Our results revealed that PGPB inoculation increased its abundance in the corresponding compartment, and all treatments demonstrated plant growth promotion effects. Further analysis of the sequencing data indicated that the presence of PGPB exerted a more significant impact on bacterial communities in both the rhizosphere and phyllosphere than in the inoculation compartment. Notably, the PGPB stimulated similar rhizosphere-beneficial microbes regardless of the inoculation site. We, therefore, conclude that PGPB can promote plant growth both directly and indirectly through the interaction between the rhizosphere and phyllosphere, leading to the enrichment of beneficial microorganisms.


Bacillus , Ecosystem , Rhizosphere , Plant Roots/microbiology , Bacteria/genetics , Soil Microbiology
3.
Nat Commun ; 15(1): 1440, 2024 Feb 16.
Article En | MEDLINE | ID: mdl-38365914

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD). Despite recent advances in both mouse models and humans, in vivo evidence for the importance of SEL1L in the ERAD complex formation and its (patho-)physiological relevance in mammals remains limited. Here we report that SEL1L variant p.Ser658Pro (SEL1LS658P) is a pathogenic hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Biochemical analyses reveal that SEL1LS658P variant not only reduces the protein stability of SEL1L, but attenuates the SEL1L-HRD1 interaction, likely via electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes reveal that SEL1L-HRD1 interaction is a prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L is required for the recruitment of E2 enzyme UBE2J1 as well as DERLIN to HRD1. These data not only establish the disease relevance of SEL1L-HRD1 ERAD, but also provide additional insight into the formation of a functional HRD1 ERAD complex.


Endoplasmic Reticulum-Associated Degradation , Proteins , Animals , Mice , Disease Models, Animal , Mammals/metabolism , Proteins/metabolism , Proteomics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
4.
Res Sq ; 2024 Jan 12.
Article En | MEDLINE | ID: mdl-38260335

Endoplasmic reticulum (ER) homeostasis in the hypothalamus has been implicated in the pathogenesis of certain patho-physiological conditions such as diet-induced obesity (DIO) and type 2 diabetes; however, the significance of ER quality control mechanism(s) and its underlying mechanism remain largely unclear and highly controversial in some cases. Moreover, how the biogenesis of nascent leptin receptor in the ER is regulated remains largely unexplored. Here we report that the SEL1L-HRD1 protein complex of the highly conserved ER-associated protein degradation (ERAD) machinery in POMC neurons is indispensable for leptin signaling in diet-induced obesity. SEL1L-HRD1 ERAD is constitutively expressed in hypothalamic POMC neurons. Loss of SEL1L in POMC neurons attenuates leptin signaling and predisposes mice to HFD-associated pathologies including leptin resistance. Mechanistically, newly synthesized leptin receptors, both wildtype and disease-associated human mutant Cys604Ser (Cys602Ser in mice), are misfolding prone and bona fide substrates of SEL1L-HRD1 ERAD. Indeed, defects in SEL1L-HRD1 ERAD markedly impair the maturation of these receptors and causes their ER retention. This study not only uncovers a new role of SEL1L-HRD1 ERAD in the pathogenesis of diet-induced obesity and central leptin resistance, but a new regulatory mechanism for leptin signaling.

5.
bioRxiv ; 2023 Jun 07.
Article En | MEDLINE | ID: mdl-37333389

The SEL1L-HRD1 protein complex represents the most conserved branch of endoplasmic reticulum (ER)-associated degradation (ERAD); however, definitive evidence for the importance of SEL1L in HRD1 ERAD is lacking. Here we report that attenuation of the interaction between SEL1L and HRD1 impairs HRD1 ERAD function and has pathological consequences in mice. Our data show that SEL1L variant p.Ser658Pro ( SEL1L S 658 P ) previously identified in Finnish Hound suffering cerebellar ataxia is a recessive hypomorphic mutation, causing partial embryonic lethality, developmental delay, and early-onset cerebellar ataxia in homozygous mice carrying the bi-allelic variant. Mechanistically, SEL1L S 658 P variant attenuates the SEL1L-HRD1 interaction and causes HRD1 dysfunction by generating electrostatic repulsion between SEL1L F668 and HRD1 Y30 residues. Proteomic screens of SEL1L and HRD1 interactomes revealed that the SEL1L-HRD1 interaction is prerequisite for the formation of a functional HRD1 ERAD complex, as SEL1L recruits not only the lectins OS9 and ERLEC1, but the E2 UBE2J1 and retrotranslocon DERLIN, to HRD1. These data underscore the pathophysiological importance and disease relevance of the SEL1L-HRD1 complex, and identify a key step in organizing the HRD1 ERAD complex.

6.
Plants (Basel) ; 12(9)2023 May 05.
Article En | MEDLINE | ID: mdl-37176946

The rhizosphere microbiota plays a critical and crucial role in plant health and growth, assisting plants in resisting adverse stresses, including soil salinity. Plastic film mulching is an important method to adjust soil properties and improve crop yield, especially in saline-alkali soil. However, it remains unclear whether and to what extent the association between these improvements and rhizosphere microbiota exists. Here, from a field survey and a greenhouse mesocosm experiment, we found that mulching plastic films on saline-alkali soil can promote the growth of soybeans in the field. Results of the greenhouse experiment showed that soybeans grew better in unsterilized saline-alkali soil than in sterilized saline-alkali soil under plastic film mulching. By detecting the variations in soil properties and analyzing the high-throughput sequencing data, we found that with the effect of film mulching, soil moisture content was effectively maintained, soil salinity was obviously reduced, and rhizosphere bacterial and fungal communities were significantly changed. Ulteriorly, correlation analysis methods were applied. The optimization of soil properties ameliorated the survival conditions of soil microbes and promoted the increase in relative abundance of potential beneficial microorganisms, contributing to the growth of soybeans. Furthermore, the classification of potential key rhizosphere microbial OTUs were identified. In summary, our study suggests the important influence of soil properties as drivers on the alteration of rhizosphere microbial communities and indicates the important role of rhizosphere microbiota in promoting plant performance in saline-alkali soil under plastic film mulching.

7.
Nat Nanotechnol ; 17(12): 1258-1264, 2022 Dec.
Article En | MEDLINE | ID: mdl-36302961

Multilayer van der Waals (vdW) film materials have attracted extensive interest from the perspective of both fundamental research1-3 and technology4-7. However, the synthesis of large, thick, single-crystal vdW materials remains a great challenge because the lack of out-of-plane chemical bonds weakens the epitaxial relationship between neighbouring layers8-31. Here we report the continuous epitaxial growth of single-crystal graphite films with thickness up to 100,000 layers on high-index, single-crystal nickel (Ni) foils. Our epitaxial graphite films demonstrate high single crystallinity, including an ultra-flat surface, centimetre-size single-crystal domains and a perfect AB-stacking structure. The exfoliated graphene shows excellent physical properties, such as a high thermal conductivity of ~2,880 W m-1 K-1, intrinsic Young's modulus of ~1.0 TPa and low doping density of ~2.2 × 1010 cm-2. The growth of each single-crystal graphene layer is realized by step edge-guided epitaxy on a high-index Ni surface, and continuous growth is enabled by the isothermal dissolution-diffusion-precipitation of carbon atoms driven by a chemical potential gradient between the two Ni surfaces. The isothermal growth enables the layers to grow at optimal conditions, without stacking disorders or stress gradients in the final graphite. Our findings provide a facile and scalable avenue for the synthesis of high-quality, thick vdW films for various applications.

8.
J Hazard Mater ; 420: 126501, 2021 10 15.
Article En | MEDLINE | ID: mdl-34252674

The refined tailing, generated from refining of titanium tetrachloride (TiCl4) for vanadium (V) removal, is a hazardous material to environment due to the high content of V. Aiming at effective and selective extraction of V from the refined tailing, a fluidized chlorination process was proposed in present work. The chlorination behaviors of the refined tailing which determine the efficiency and selectivity of V extraction were emphatically investigated. A resultant 96.36% of V and 4.23% of Ti can be synchronously extracted from the tailing at the optimum conditions of 800 °C for 60 min, with the pressure fraction of chlorine [P(Cl2)/P(Cl2 +N2)] = 0.5 and the mass fraction of petroleum coke in raw materials for chlorination at 10 wt%. High purity vanadium oxytrichloride (VOCl3, higher than 99.99 wt%) can be finally obtained via further simple purification of the collected chloride product. Moreover, the chlorination residue containing concentrated TiO2 has the potential to be further utilized for Ti extraction. Thus the process provides a new prospect for effective, clean and comprehensive utilization of the refined tailing, which can solve the hazardous waste recycle and environmental concerns simultaneously.


Coke , Vanadium , Halogenation , Titanium
...