Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(23): e0144821, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34550753

RESUMEN

Municipal wastewater provides an integrated sample of a diversity of human-associated microbes across a sewershed, including viruses. Wastewater-based epidemiology (WBE) is a promising strategy to detect pathogens and may serve as an early warning system for disease outbreaks. Notably, WBE has garnered substantial interest during the coronavirus disease 2019 (COVID-19) pandemic to track disease burden through analyses of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA. Throughout the COVID-19 outbreak, tracking SARS-CoV-2 in wastewater has been an important tool for understanding the spread of the virus. Unlike traditional sequencing of SARS-CoV-2 isolated from clinical samples, which adds testing burden to the health care system, in this study, metatranscriptomics was used to sequence virus directly from wastewater. Here, we present a study in which we explored RNA viral diversity through sequencing 94 wastewater influent samples across seven wastewater treatment plants (WTPs), collected from August 2020 to January 2021, representing approximately 16 million people in Southern California. Enriched viral libraries identified a wide diversity of RNA viruses that differed between WTPs and over time, with detected viruses including coronaviruses, influenza A, and noroviruses. Furthermore, single-nucleotide variants (SNVs) of SARS-CoV-2 were identified in wastewater, and we measured proportions of overall virus and SNVs across several months. We detected several SNVs that are markers for clinically important SARS-CoV-2 variants along with SNVs of unknown function, prevalence, or epidemiological consequence. Our study shows the potential of WBE to detect viruses in wastewater and to track the diversity and spread of viral variants in urban and suburban locations, which may aid public health efforts to monitor disease outbreaks. IMPORTANCE Wastewater-based epidemiology (WBE) can detect pathogens across sewersheds, which represents the collective waste of human populations. As there is a wide diversity of RNA viruses in wastewater, monitoring the presence of these viruses is useful for public health, industry, and ecological studies. Specific to public health, WBE has proven valuable during the coronavirus disease 2019 (COVID-19) pandemic to track the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) without adding burden to health care systems. In this study, we used metatranscriptomics and reverse transcription-droplet digital PCR (RT-ddPCR) to assay RNA viruses across Southern California wastewater from August 2020 to January 2021, representing approximately 16 million people from Los Angeles, Orange, and San Diego counties. We found that SARS-CoV-2 quantification in wastewater correlates well with county-wide COVID-19 case data, and that we can detect SARS-CoV-2 single-nucleotide variants through sequencing. Likewise, wastewater treatment plants (WTPs) harbored different viromes, and we detected other human pathogens, such as noroviruses and adenoviruses, furthering our understanding of wastewater viral ecology.


Asunto(s)
Virus ARN/aislamiento & purificación , SARS-CoV-2/aislamiento & purificación , Viroma , Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales/virología , COVID-19/epidemiología , California , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Virus ARN/clasificación , Virus ARN/genética , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Análisis de Secuencia de ARN
2.
Br J Pharmacol ; 139(3): 475-86, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12788807

RESUMEN

(1) We examined A3 adenosine and CB1 cannabinoid receptor-coupled signaling pathways regulating Cl(-) current in a human nonpigmented ciliary epithelial (NPCE) cell line. (2) Whole-cell patch-clamp recordings demonstrated that the A3 receptor agonist, IB-MECA, activates an outwardly rectifying Cl(-)current (I(Cl,Aden)) in NPCE cells, which was inhibited by the adenosine receptor antagonist, CGS-15943 or by the protein kinase C (PKC) activator, phorbol 12,13 dibutyrate (PDBu). (3) Treatment of NPCE cells with pertussis-toxin (PTX), or transfection with the COOH-terminus of beta-adrenergic receptor kinase (ct-betaARK), inhibited I(Cl,Aden). The phosphatidyl inositol 3-kinase (PI3K) inhibitor, wortmannin, had no effect on I(Cl,Aden); however, the mitogen-activated protein kinase kinase (MEK) inhibitor, PD98059, inhibited I(Cl,Aden). (4) Reverse transcription-polymerase chain reaction experiments and immunocytochemistry confirmed mRNA and protein expression for the CB1 receptor in NPCE cells, and the CB1 receptor agonist, Win 55,212-2, activated a PDBu-sensitive Cl(-) current (I(Cl,Win)). (5) Transfection of NPCE cells with the human CB1 (hCB1) receptor, increased I(Cl,Win), consistent with increased receptor expression, and I(Cl,Win) in hCB1 receptor-transfected cells was decreased after application of a CB1 receptor inverse agonist, SR 141716. (6) Constitutive activity for CB1 receptors was not significant in NPCE cells as transfection with hCB1 receptors did not increase basal Cl(-) current, nor was basal current inhibited by SR 141716. (7) I(Cl,Win) was inhibited by PTX preincubation, by transfection with ct-betaARK and by the MEK inhibitor, PD98059, but unaffected by the PI3K inhibitor, wortmannin. (8) We conclude that both A3 and CB1 receptors activate a PKC-sensitive Cl(-) current in human NPCE cells via a G(i/o)/Gbetagamma signaling pathway, in a manner independent of PI3K but involving MAPK.


Asunto(s)
Canales de Cloruro/metabolismo , Células Epiteliales/metabolismo , Subunidades beta de la Proteína de Unión al GTP/fisiología , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Proteína Quinasa C/metabolismo , Receptor de Adenosina A3/fisiología , Receptor Cannabinoide CB1/fisiología , Línea Celular Transformada , Cilios/efectos de los fármacos , Cilios/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Células Epiteliales/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...