Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Chemosphere ; 359: 142353, 2024 Jul.
Article En | MEDLINE | ID: mdl-38761828

Microorganisms in the waterline zone can secrete pigments to avoid damage caused by ultraviolet radiation, some of which have corrosive effects. In this work, we found that the secretion of pyomelanin by P3 strain of Pseudoalteromonas lipolytica significantly increases under strong lighting conditions, accelerating the corrosion of the material. Molecular mechanisms indicate that strong light, as a stressful environmental factor, enhances the expression of melanin secretion-related genes to prevent bacteria from being damaged by ultraviolet radiation. Therefore, this work proposes a new corrosion mechanism in the waterline zone, pigment-producing microorganisms are also involved in the waterline corrosion process.


Alloys , Melanins , Steel , Corrosion , Steel/chemistry , Melanins/metabolism , Alloys/chemistry , Pseudoalteromonas/metabolism , Ultraviolet Rays , Light
2.
Cancer Cell Int ; 24(1): 173, 2024 May 17.
Article En | MEDLINE | ID: mdl-38760774

BACKGROUND: Drug resistance poses a significant challenge in cancer treatment, particularly as a leading cause of therapy failure. Cisplatin, the primary drug for lung adenocarcinoma (LUAD) chemotherapy, shows effective treatment outcomes. However, the development of resistance against cisplatin is a major obstacle. Therefore, identifying genes resistant to cisplatin and adopting personalized treatment could significantly improve patient outcomes. METHODS: By examining transcriptome data of cisplatin-resistant LUAD cells from the GEO database, 181 genes associated with cisplatin resistance were identified. Using univariate regression analysis, random forest and multivariate regression analyses, two prognostic genes, E2F7 and FAM83A, were identified. This study developed a prognostic model utilizing E2F7 and FAM83A as key indicators. The Cell Counting Kit 8 assay, Transwell assay, and flow cytometry were used to detect the effects of E2F7 on the proliferation, migration, invasiveness and apoptosis of A549/PC9 cells. Western blotting was used to determine the effect of E2F7 on AKT/mTOR signaling pathway. RESULTS: This study has pinpointed two crucial genes associated with cisplatin resistance, E2F7 and FAM83A, and developed a comprehensive model to assist in the diagnosis, prognosis, and evaluation of relapse risk in LUAD. Analysis revealed that patients at higher risk, according to these genetic markers, had elevated levels of immune checkpoints (PD-L1 and PD-L2). The prognostic and diagnosis values of E2F7 and FAM83A were further confirmed in clinical data. Furthermore, inhibiting E2F7 in lung cancer cells markedly reduced their proliferation, migration, invasion, and increased apoptosis. In vivo experiments corroborated these findings, showing reduced tumor growth and lung metastasis upon E2F7 suppression in lung cancer models. CONCLUSION: Our study affirms the prognostic value of a model based on two DEGs, offering a reliable method for predicting the success of tumor immunotherapy in patients with LUAD. The diagnostic and predictive model based on these genes demonstrates excellent performance. In vitro, reducing E2F7 levels shows antitumor effects by blocking LUAD growth and progression. Further investigation into the molecular mechanisms has highlighted E2F7's effect on the AKT/mTOR signaling pathway, underscoring its therapeutic potential. In the era of personalized medicine, this DEG-based model promises to guide clinical practice.

3.
Int J Gen Med ; 16: 793-801, 2023.
Article En | MEDLINE | ID: mdl-36883125

Objective: To compare the effect of diaphragmatic breathing and volume incentive spirometry (VIS) on hemodynamics, pulmonary function, and blood gas in patients following open abdominal surgery under general anesthesia. Methods: A total of 58 patients who received open abdominal surgery were randomly assigned to the control group (n=29) undergoing diaphragmatic breathing exercises and the VIS group (n=29) undergoing VIS exercises. All the participants performed the six-minute walk test (6MWT) preoperatively to evaluate their functional capacity. Hemodynamic indexes, pulmonary function tests, and blood gas indexes were recorded before surgery and on the 1st, 3rd, and 5th postoperative day. Results: The functional capacity was not significantly different between the two groups during the preoperative period (P >0.05). At 3 days and 5 days postoperatively, patients in the VIS group had a significantly higher SpO2 than that in the control group (P <0.05). Pulmonary function test values were reduced in both two groups postoperatively when compared to the preoperative values but improved for three and five days afterward (P <0.05). Of note, the significantly elevated levels of peak expiratory flow (PEF), forced expiratory volume in the first second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio were observed on the 1st, 3rd, and 5th postoperative days in the VIS group compared with those in the control group (P <0.05). Besides, bass excess (BE), and pH values were significantly higher in the VIS group on the 1st postoperative day than those in the control group (P <0.05). Conclusion: Diaphragmatic breathing and VIS could improve postoperative pulmonary function, but VIS exercise might be a better option for improving hemodynamics, pulmonary function, and blood gas for patients after open abdominal surgery, hence lowering the incidence of postoperative pulmonary complications.

4.
Bioelectrochemistry ; 145: 108052, 2022 Jun.
Article En | MEDLINE | ID: mdl-35065377

In this work, we studied the microbiologically influenced corrosion mechanism of Cu by marine ammonifying bacterium Alcaligenes aquatilis. Through immersion experiments, we found that A. aquatilis could accelerate the corrosion rate of copper, resulting in the development of pits. In the presence of A. aquatilis, the morphology and composition of the corrosion products differed from the abiotic samples, and we found that Cu2O was the main corrosion product. By analyzing the biotic medium and experimental NH3 addition, we verified that NH3 was the main component that intensified copper corrosion. Furthermore, we found that NH3 played a catalytic role in the corrosion of Cu in the presence of A. aquatilis.


Alcaligenes , Copper , Bacteria , Corrosion
5.
Front Med (Lausanne) ; 8: 734643, 2021.
Article En | MEDLINE | ID: mdl-35145971

Long non-coding RNAs (lncRNAs) exceed 200 nucleotides in length are considered to be involved in both developmental processes and various diseases. Here, we focus on lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1), which was one of the most important lncRNAs in proliferation, apoptosis, and migration. MALAT1 plays a regulatory role in liver diseases, including hepatic fibrosis, liver regeneration, liver cancer, and fatty liver diseases. In the current review, we summarize the latest literature about the function roles of MALAT1 in liver disorders. Probing the regulatory mechanism and cross talk of MALAT1 with other signaling pathways of pathological processes would improve the prognosis, diagnosis of liver diseases, and offer a promising candidate target for therapeutic interventions.

6.
Front Plant Sci ; 10: 160, 2019.
Article En | MEDLINE | ID: mdl-30873187

Interactive effects of reduced irrigation and salt stress on leaf physiological parameters, biomass accumulation, and water use efficiency (WUE) of tomato plants at leaf and whole plant scales were investigated in a field experiment during 2016 and a greenhouse experiment during 2017. Experiment utilized two irrigation regimes (full, 2/3 of full irrigation) and four soil salt regimes (0, 0.3, 0.6, 0.9% in 2016 season; and 0, 0.2, 0.3, 0.4% in 2017 season). Three salts, sodium chloride, magnesium sulfate, and calcium sulfate (mass ratio of 2:2:1), were homogeneously mixed with soil prior to packing into containers (0.024 m3). Li-COR 6400 was used to measure tomato leaf physiological parameters. Instantaneous water use efficiency (WUEins, µmol mmol-1) and intrinsic water use efficiency (WUEint, µmol mol-1) were determined at leaf scale, yield water use efficiency (WUEY, g L-1), and dry biomass water use efficiency (WUEDM, g L-1) were determined at whole plant scale. Plants irrigated with 2/3 of full irrigation with zero soil-salt treatment had higher dry biomass and yield per plant, resulting in the highest WUEDM and WUEY at whole plant scale. Increasing soil salinity decreased dry biomass and yield, leading to greater decreases in whole plant WUEDM and WUEY under both irrigation treatments. At full irrigation, no decreases in stomatal conductance (gs, mol m-2 s-1) and slight increase in photosynthetic rate (Pn, µmol m-2 s-1) led to higher WUEint at leaf scale during both years. Under full and reduced irrigation, increasing soil salt content decreased Pn and transpiration rate (Tr, mmol m-2 s-1) and led to reductions in WUEins at the leaf scale. However, compared to full irrigation, reduced irrigation improved WUEins with a significant decline in Tr in no salt and 0.3% soil-salt treatments during both years. For soil salt content of 0.6%, stomatal limitation due to salt stress resulted in higher WUEint, but soil salt content of 0.9% decreased WUEint due to non-stomatal limitation. Soil salt content significantly decreased sap flow, with the maximum variation of daily sap flow per plant of 7.96-31.37 g/h in 2016 and 12.52-36.02 g h-1 in 2017. Sap flow rate was linearly related to air temperature (Ta, °C), solar radiation (Rs, W m-2), and vapor pressure deficit (VPD, kPa). These results advance knowledge on tomato response to abiotic stresses and could improve management of tomato production in water- and salt-stressed areas.

7.
Sci Total Environ ; 613-614: 1003-1012, 2018 Feb 01.
Article En | MEDLINE | ID: mdl-28946373

Quantitatively ascertaining and analyzing long-term responses of crop yield and nitrate leaching on varying irrigation and fertilization treatments are focal points for guaranteeing crop yield and reducing nitrogen loss. The calibrated agricultural-hydrological RZWQM2 model was used to explore the long-term (2003-2013) transport processes of water and nitrogen and the nitrate leaching amount into groundwater in summer maize and winter wheat rotation field in typical intensive plant area in the North China Plain, Daxing district of Beijing. Simulation results showed that application rates of irrigation and nitrogen fertilizer have couple effects on crop yields and nitrogen leaching of root zone. When both the irrigation and fertilizer for summer maize and winter wheat were 400mm and 400kgNha-1, respectively, nitrate leaching into groundwater accounted for 47.9% of application amount of nitrogen fertilizer. When application amount of irrigation is 200mm and fertilization is 200kgNha-1, NUPE (nitrogen uptake efficiency), NUE (nitrogen use efficiency), NPFP (nitrogen partial factor productivity), and Wpi (irrigation water productive efficiency) were in general higher than that under other irrigation and fertilization condition (irrigation from 104-400mm, fertilizer 104-400kgNha-1). Irrigation bigger than 200mm could shorten the response time of nitrate leaching in deeper soil layer in different irrigation treatment.

8.
Ground Water ; 46(1): 80-90, 2008.
Article En | MEDLINE | ID: mdl-18181867

In arid regions, human activities like agriculture and industry often require large ground water extractions. Under these circumstances, appropriate ground water management policies are essential for preventing aquifer overdraft, and thereby protecting critical ecologic and economic objectives. Identification of such policies requires accurate simulation capability of the ground water system in response to hydrological, meteorological, and human factors. In this research, artificial neural networks (ANNs) were developed and applied to investigate the effects of these factors on ground water levels in the Minqin oasis, located in the lower reach of Shiyang River Basin, in Northwest China. Using data spanning 1980 through 1997, two ANNs were developed to model and simulate dynamic ground water levels for the two subregions of Xinhe and Xiqu. The ANN models achieved high predictive accuracy, validating to 0.37 m or less mean absolute error. Sensitivity analyses were conducted with the models demonstrating that agricultural ground water extraction for irrigation is the predominant factor responsible for declining ground water levels exacerbated by a reduction in regional surface water inflows. ANN simulations indicate that it is necessary to reduce the size of the irrigation area to mitigate ground water level declines in the oasis. Unlike previous research, this study demonstrates that ANN modeling can capture important temporally and spatially distributed human factors like agricultural practices and water extraction patterns on a regional basin (or subbasin) scale, providing both high-accuracy prediction capability and enhanced understanding of the critical factors influencing regional ground water conditions.


Neural Networks, Computer , Water Supply , Agriculture , China , Computer Simulation , Conservation of Natural Resources , Humans
9.
J Environ Sci (China) ; 18(1): 147-53, 2006.
Article En | MEDLINE | ID: mdl-20050564

Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.


Models, Theoretical , Phenanthrenes/metabolism , Soil Pollutants/metabolism , Chromatography, High Pressure Liquid , Spectrophotometry, Ultraviolet
...