Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Clin Microbiol Antimicrob ; 22(1): 94, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37904155

RESUMEN

OBJECTIVES: Antimicrobial susceptibility tests (ASTs) are pivotal tools for detecting and combating infections caused by multidrug-resistant rapidly growing mycobacteria (RGM) but are time-consuming and labor-intensive. DESIGN: We used a Mycobacterium abscessus-based RGM model to develop a rapid (24-h) AST from the beginning of the strain culture, the Clinical Antimicrobials Susceptibility Test Ramanometry for RGM (CAST-R-RGM). The ASTs obtained for 21 clarithromycin (CLA)-treated and 18 linezolid (LZD)-treated RGM isolates. RESULTS: CAST-R-RGM employs D2O-probed Raman microspectroscopy to monitor RGM metabolic activity, while also revealing bacterial antimicrobial drug resistance mechanisms. The results of clarithromycin (CLA)-treated and linezolid (LZD)-treated RGM isolates exhibited 90% and 83% categorical agreement, respectively, with conventional AST results of the same isolates. Furthermore, comparisons of time- and concentration-dependent Raman results between CLA- and LZD-treated RGM strains revealed distinct metabolic profiles after 48-h and 72-h drug treatments, despite similar profiles obtained for both drugs after 24-h treatments. CONCLUSIONS: Ultimately, the rapid, accurate, and low-cost CAST-R-RGM assay offers advantages over conventional culture-based ASTs that warrant its use as a tool for improving patient treatment outcomes and revealing bacterial drug resistance mechanisms.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Mycobacterium , Humanos , Claritromicina/farmacología , Linezolid/farmacología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Infecciones por Mycobacterium no Tuberculosas/microbiología , Micobacterias no Tuberculosas
2.
Nat Plants ; 9(1): 96-111, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36624255

RESUMEN

Stem vascular cambium cells in forest trees produce wood for materials and energy. WOX4 affects the proliferation of such cells in Populus. Here we show that PtrWOX4a is the most highly expressed stem vascular-cambium-specific (VCS) gene in P. trichocarpa, and its expression is controlled by the product of the second most highly expressed VCS gene, PtrVCS2, encoding a zinc finger protein. PtrVCS2 binds to the PtrWOX4a promoter as part of a PtrWOX13a-PtrVCS2-PtrGCN5-1-PtrADA2b-3 protein tetramer. PtrVCS2 prevented the interaction between PtrGCN5-1 and PtrADA2b-3, resulting in H3K9, H3K14 and H3K27 hypoacetylation at the PtrWOX4a promoter, which led to fewer cambium cell layers. These effects on cambium cell proliferation were consistent across more than 20 sets of transgenic lines overexpressing individual genes, gene-edited mutants and RNA interference lines in P. trichocarpa. We propose that the tetramer-PtrWOX4a system may coordinate genetic and epigenetic regulation to maintain normal vascular cambium development for wood formation.


Asunto(s)
Cámbium , Populus , Cámbium/genética , Populus/genética , Epigénesis Genética , Código de Histonas , Madera , Regulación de la Expresión Génica de las Plantas
3.
Clin Chem ; 68(8): 1064-1074, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35714147

RESUMEN

BACKGROUND: The battle against Helicobacter pylori (H. pylori) infections demands fast, reliable, and sensitive methods for pathogen identification (ID), antimicrobial susceptibility tests (ASTs) based on metabolic response, and genome-wide mutation profiling that reveals resistance mechanisms. METHODS: Here we introduce Clinical Antimicrobial Susceptibility Test Ramanometry for H. pylori (CAST-R-HP), and its validation with clinical samples. This method performs rapid ID, metabolism inhibition-based AST, and high-quality whole-genome sequencing for cells of targeted resistance phenotype, all at precisely 1-cell resolution and directly from biopsy samples. RESULTS: In CAST-R-HP, automated acquisition and machine learning of single-cell Raman spectra (SCRS) enable distinguishing individual H. pylori cells directly from a biopsy sample, with 98.5 ± 0.27% accuracy in ID. Moreover, by adding a 48- to72-h D2O feeding and drug exposure step prior to SCRS acquisition, CAST-R-HP reports AST for levofloxacin and clarithromycin with 100% accuracy, based on metabolic inhibition level. Furthermore, CAST-R-HP supports rapid sorting, low-bias DNA amplification, and full genome sequencing of single H. pylori cells with the SCRS defined, targeted drug-susceptibility phenotype, via Raman-activated gravity-driven cell encapsulation and sequencing. The genome-wide mutation map (maximum 99.70% coverage), at precisely 1-cell resolution, not only elucidates the drug-susceptibility phenotypes but also unveils their underlying molecular mechanisms. CONCLUSION: The culture independency, shorter turnaround time, high resolution, and comprehensive information output suggest that CAST-R-HP is a powerful tool for diagnosing and treating H. pylori infections.


Asunto(s)
Antiinfecciosos , Infecciones por Helicobacter , Helicobacter pylori , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Biopsia , Farmacorresistencia Bacteriana/genética , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Humanos , Pruebas de Sensibilidad Microbiana
4.
mLife ; 1(3): 329-340, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38818218

RESUMEN

Antimicrobial susceptibility tests (ASTs) are pivotal in combating multidrug resistant pathogens, yet they can be time-consuming, labor-intensive, and unstable. Using the AST of tigecycline for sepsis as the main model, here we establish an automated system of Clinical Antimicrobials Susceptibility Test Ramanometry (CAST-R), based on D2O-probed Raman microspectroscopy. Featuring a liquid robot for sample pretreatment and a machine learning-based control scheme for data acquisition and quality control, the 3-h, automated CAST-R process accelerates AST by >10-fold, processes 96 paralleled antibiotic-exposure reactions, and produces high-quality Raman spectra. The Expedited Minimal Inhibitory Concentration via Metabolic Activity is proposed as a quantitative and broadly applicable parameter for metabolism-based AST, which shows 99% essential agreement and 93% categorical agreement with the broth microdilution method (BMD) when tested on 100 Acinetobacter baumannii isolates. Further tests on 26 clinically positive blood samples for eight antimicrobials, including tigecycline, meropenem, ceftazidime, ampicillin/sulbactam, oxacillin, clindamycin, vancomycin, and levofloxacin reveal 93% categorical agreement with BMD-based results. The automation, speed, reliability, and general applicability of CAST-R suggest its potential utility for guiding the clinical administration of antimicrobials.

5.
Plant Physiol ; 184(3): 1389-1406, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32943464

RESUMEN

Wood formation is a complex process that involves cell differentiation, cell expansion, secondary wall deposition, and programmed cell death. We constructed a four-layer wood formation transcriptional regulatory network (TRN) in Populus trichocarpa (black cottonwood) that has four Secondary wall-associated NAC-Domain1 (PtrSND1) transcription factor (TF) family members as the top-layer regulators. We characterized the function of a MYB (PtrMYB161) TF in this PtrSND1-TRN, using transgenic P trichocarpa cells and whole plants. PtrMYB161 is a third-layer regulator that directly transactivates five wood formation genes. Overexpression of PtrMYB161 in P. trichocarpa (OE-PtrMYB161) led to reduced wood, altered cell type proportions, and inhibited growth. Integrative analysis of wood cell-based chromatin-binding assays with OE-PtrMYB161 transcriptomics revealed a feedback regulation system in the PtrSND1-TRN, where PtrMYB161 represses all four top-layer regulators and one second-layer regulator, PtrMYB021, possibly affecting many downstream TFs in, and likely beyond, the TRN, to generate the observed phenotypic changes. Our data also suggested that the PtrMYB161's repressor function operates through interaction of the base PtrMYB161 target-binding system with gene-silencing cofactors. PtrMYB161 protein does not contain any known negative regulatory domains. CRISPR-based mutants of PtrMYB161 in P. trichocarpa exhibited phenotypes similar to the wild type, suggesting that PtrMYB161's activator functions are redundant among many TFs. Our work demonstrated that PtrMYB161 binds to multiple sets of target genes, a feature that allows it to function as an activator as well as a repressor. The balance of the two functions may be important to the establishment of regulatory homeostasis for normal growth and development.


Asunto(s)
Aumento de la Célula , Proliferación Celular , Populus/crecimiento & desarrollo , Populus/genética , Populus/metabolismo , Factores de Transcripción/metabolismo , Madera/crecimiento & desarrollo , Xilema/metabolismo , Pared Celular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Variación Genética , Genotipo , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...