Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 345: 140498, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866499

RESUMEN

Mining and processing of ores in arid (desert) areas generates high amounts of dust, which might be enriched in potentially harmful elements. We studied dust fractions of ores, soils, and technological materials from mining and related hydrometallurgical operation at former Skorpion Zinc non-sulfide Zn deposit in southern Namibia (closed and placed under maintenance in 2020). Chemical and mineralogical investigation was combined with oral bioaccessibility testing of fine dust fractions (<48 µm and <10 µm) in simulated gastric fluid (SGF) to assess potential risk of intake of metallic contaminants (Cd, Cu, Pb, Zn) for staff operating in the area. The bulk metals concentrations were largely variable and ranked as follows: soils < tailings â‰ª Skorpion ores < imported ores and dross used for feed ore blending. Maximum contaminant concentrations in the original granular materials were 927 mg Cd/kg, 9150 mg Cu/kg, 50 g Pb/kg and 706 g Zn/kg, respectively, and generally increased as a function of decreasing grain size. The highest bioaccessible concentrations of Cd and Pb yielded imported ores from Taiwan and Turkey and, together with the milled dross, these samples also exhibited the highest Zn bioaccessibilities. The exposure estimates calculated for a worker (weighing 70 kg) in this mining/ore processing operation at a dust ingestion rate of 100 mg/day indicated that most dust samples (soils, tailings, Skorpion ores) exhibited metals intake values far below tolerable daily intake limits. The overall health risk was limited in all mining and ore processing areas except for the ore blending area, where imported ores and recycled dross enriched in bioaccessible Cd, Pb and/or Zn were used for the ore blending. Safety measures required by the mine operator (wearing of masks by the operating staff) helped to prevent the staff's exposure to potentially contaminated dust even in this blending ore area.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Humanos , Monitoreo del Ambiente , Polvo/análisis , Cadmio , Plomo , Contaminantes del Suelo/análisis , Suelo , Zinc , Metales Pesados/análisis
2.
J Environ Manage ; 293: 112899, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34089961

RESUMEN

The surroundings of mines and smelters may be exposed to wildfires, especially in semi-arid areas. The temperature-dependent releases of metal(loid)s (As, Cd, Cu, Pb, Zn) from biomass-rich savanna soils collected near a Cu smelter in Namibia have been studied under simulated wildfire conditions. Laboratory single-step combustion experiments (250-850 °C) and experiments with a continuous temperature increase (25-750 °C) were coupled with mineralogical investigations of the soils, ashes, and aerosols. Metals (Cd, Cu, Pb, Zn) were released at >550-600 °C, mostly at the highest temperatures, where complex aerosol particles, predominantly composed of slag-like aggregates, formed. In contrast, As exhibited several emission peaks at ~275 °C, ~370-410 °C, and ~580 °C, reflecting its complex speciation in the solid phase and indicating its remobilization, even during wildfires with moderate soil heating. At <500 °C, As was successively released via the transformation of As-bearing hydrous ferric oxides, arsenolite (As2O3) grains attached to the organic matter fragments, metal arsenates, and/or As-bearing apatite, followed by the thermal decomposition of enargite (Cu3AsS4) at >500 °C. The results indicate that the active and abandoned mining and smelting sites, especially those highly enriched in As, should be protected against wildfires, which can be responsible for substantial As re-emissions.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Incendios Forestales , Monitoreo del Ambiente , Pradera , Metales Pesados/análisis , Namibia , Suelo , Contaminantes del Suelo/análisis
3.
Chemosphere ; 247: 125972, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32069734

RESUMEN

Wildfires can be responsible for significant mercury (Hg) emissions especially in contaminated areas. Here, we investigated the Hg distribution in topsoils and vegetation samples and temperature-dependent Hg mobilization from biomass-rich topsoils collected near a copper (Cu) smelter in Tsumeb (semi-arid Namibia), where Hg-rich Cu concentrates are processed. The thermo-desorption (TD) experiments conducted on representative biomass-rich topsoils (3.9-7.7 mg Hg/kg) indicated that more than 91% of the Hg was released at ∼340 °C, which corresponds to the predominant grassland-fire conditions. The mineralogical investigation indicated that the Hg comes mainly from the deposited smelter emissions because no distinct Hg-rich microparticles corresponding to the windblown dust from the nearby disposal sites of the technological materials (concentrates, slags, tailings) were found. A comparison with the TD curves of the Hg reference compounds confirmed that the Hg in the biomass-rich topsoils occurs as a mixture of Hg bound to the organic matter and metacinnabar (black HgS), which exhibits similarities with the TD pattern of smelter flue dust residue. Despite the installation of a sulfuric acid plant in the smelter in 2015 and a calculated drop in the estimated Hg emissions (from 1301 ± 457 kg/y for the period 2004-2015 to 67 ± 5 kg/y after 2015), the Hg legacy pool in the smelter surroundings can potentially be re-emitted back to the atmosphere by wildfire. Using the Hg spatial distribution data in the area (184 km2), the estimates indicate that up to 303 kg and 1.3 kg can be remobilized from the topsoils and vegetation, respectively.


Asunto(s)
Contaminación Ambiental , Mercurio/análisis , Contaminantes del Suelo/análisis , Incendios Forestales , Biomasa , Cobre , Polvo/análisis , Monitoreo del Ambiente , Calor/efectos adversos
4.
Environ Int ; 124: 205-215, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30654327

RESUMEN

Ore mining and processing in semi-arid areas is responsible for the generation of metal(loid)-containing dust, which is easily transported by wind to the surrounding environment. To assess the human exposure to dust-derived metal(loid)s (As, Cd, Cu, Pb, Sb, Zn), as well as the potential risks related to incidental dust ingestion, we studied mine tailing dust (n = 8), slag dust (n = 5) and smelter dust (n = 4) from old mining and smelting sites in northern Namibia (Kombat, Berg Aukas, Tsumeb). In vitro bioaccessibility testing using extraction in simulated gastric fluid (SGF) was combined with determination of grain-size distributions, chemical and mineralogical characterizations and leaching tests conducted on original dust samples and separated PM10 fractions. The bulk and bioaccessible concentrations of the metal(loid)s were ranked as follows: mine tailing dusts < slag dusts ≪ smelter dusts. Extremely high As and Pb bioaccessibilities in the smelter dusts were caused by the presence of highly soluble phases such as arsenolite (As2O3) and various metal-arsenates unstable under the acidic conditions of SGF. The exposure estimates calculated for an adult person of 70 kg at a dust ingestion rate of 50 mg/day indicated that As, Pb (and also Cd to a lesser extent) grossly exceeded tolerable daily intake limits for these contaminants in the case of slag and smelter dusts. The high risk for smelter dusts has been acknowledged, and the safety measures currently adopted by the smelter operator in Tsumeb are necessary to reduce the staff's exposure to contaminated dust. The exposure risk for the local population is only important at the unfenced disposal sites at Berg Aukas, where the PM10 exhibited high levels of bioaccessible Pb.


Asunto(s)
Polvo , Exposición a Riesgos Ambientales , Metales , Minería , Contaminantes del Suelo , Adulto , Arseniatos , Niño , Polvo/análisis , Monitoreo del Ambiente , Humanos , Metales/administración & dosificación , Metales/análisis , Namibia , Contaminantes del Suelo/administración & dosificación , Contaminantes del Suelo/análisis
5.
J Environ Manage ; 187: 178-186, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27889660

RESUMEN

The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment.


Asunto(s)
Cobre , Ambiente , Contaminantes Ambientales/análisis , Metalurgia/métodos , Residuos/análisis , Arseniatos , Unión Europea , Residuos Peligrosos/legislación & jurisprudencia , Metales , Minería , Namibia
6.
Sci Total Environ ; 563-564: 329-39, 2016 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-27139305

RESUMEN

We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area (Mufulira, Zambian Copperbelt) and a hot semi-arid area (Tsumeb, Namibia). High concentrations of metal(loid)s were detected in the studied soils: up to 1450mgAskg(-1), 8980mgCukg(-1), 4640mgPbkg(-1), 2620mgZnkg(-1). A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles have either geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [Cu(1+)Fe(3+)O2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...