Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
2.
Nat Commun ; 14(1): 2132, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-37059720

RESUMEN

Resistance to standard and novel therapies remains the main obstacle to cure in acute myeloid leukaemia (AML) and is often driven by metabolic adaptations which are therapeutically actionable. Here we identify inhibition of mannose-6-phosphate isomerase (MPI), the first enzyme in the mannose metabolism pathway, as a sensitizer to both cytarabine and FLT3 inhibitors across multiple AML models. Mechanistically, we identify a connection between mannose metabolism and fatty acid metabolism, that is mediated via preferential activation of the ATF6 arm of the unfolded protein response (UPR). This in turn leads to cellular accumulation of polyunsaturated fatty acids, lipid peroxidation and ferroptotic cell death in AML cells. Our findings provide further support to the role of rewired metabolism in AML therapy resistance, unveil a connection between two apparently independent metabolic pathways and support further efforts to achieve eradication of therapy-resistant AML cells by sensitizing them to ferroptotic cell death.


Asunto(s)
Leucemia Mieloide Aguda , Manosa , Humanos , Muerte Celular , Citarabina/farmacología , Línea Celular Tumoral , Leucemia Mieloide Aguda/metabolismo , Apoptosis , Tirosina Quinasa 3 Similar a fms
3.
Biol Open ; 11(6)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35603697

RESUMEN

Peptidylarginine deiminases (PADIs) are strongly associated with the development of autoimmunity, neurodegeneration and cancer but their physiological roles are ill-defined. The nuclear deiminase PADI4 regulates pluripotency in the mammalian pre-implantation embryo but its function in tissue development is unknown. PADI4 is primarily expressed in the bone marrow, as part of a self-renewal-associated gene signature. It has been shown to regulate the proliferation of multipotent haematopoietic progenitors and proposed to impact on the differentiation of haematopoietic stem cells (HSCs), suggesting that it controls haematopoietic development or regeneration. Using conditional in vivo models of steady state and acute Padi4 ablation, we examined the role of PADI4 in the development and function of the haematopoietic system. We found that PADI4 loss does not significantly affect HSC self-renewal or differentiation potential upon injury or serial transplantation, nor does it lead to HSC exhaustion or premature ageing. Thus PADI4 is dispensable for cell-autonomous HSC maintenance, differentiation and haematopoietic regeneration. This work represents the first study of PADI4 in tissue development and indicates that pharmacological PADI4 inhibition may be tolerated without adverse effects.


Asunto(s)
Hidrolasas , Mamíferos , Animales , Diferenciación Celular/genética , Hidrolasas/genética , Arginina Deiminasa Proteína-Tipo 4 , Desiminasas de la Arginina Proteica/genética
4.
Stem Cell Reports ; 16(11): 2784-2797, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34715054

RESUMEN

Hematopoietic stem cells (HSCs) reside at the apex of the hematopoietic differentiation hierarchy and sustain multilineage hematopoiesis. Here, we show that the transcriptional regulator CITED2 is essential for life-long HSC maintenance. While hematopoietic-specific Cited2 deletion has a minor impact on steady-state hematopoiesis, Cited2-deficient HSCs are severely depleted in young mice and fail to expand upon aging. Moreover, although they home normally to the bone marrow, they fail to reconstitute hematopoiesis upon transplantation. Mechanistically, CITED2 is required for expression of key HSC regulators, including GATA2, MCL-1, and PTEN. Hematopoietic-specific expression of anti-apoptotic MCL-1 partially rescues the Cited2-deficient HSC pool and restores their reconstitution potential. To interrogate the Cited2→Pten pathway in HSCs, we generated Cited2;Pten compound heterozygous mice, which had a decreased number of HSCs that failed to reconstitute the HSC compartment. In addition, CITED2 represses multiple pathways whose elevated activity causes HSC exhaustion. Thus, CITED2 promotes pathways necessary for HSC maintenance and suppresses those detrimental to HSC integrity.


Asunto(s)
Regulación de la Expresión Génica , Hematopoyesis/genética , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/metabolismo , Proteínas Represoras/genética , Transactivadores/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Redes Reguladoras de Genes/genética , Ratones Endogámicos C57BL , Ratones Noqueados , RNA-Seq/métodos , Proteínas Represoras/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Tiempo , Transactivadores/metabolismo
5.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33156926

RESUMEN

The mRNA N6-methyladenosine (m6A) modification has emerged as an essential regulator of normal and malignant hematopoiesis. Inactivation of the m6A mRNA reader YTHDF2, which recognizes m6A-modified transcripts to promote m6A-mRNA degradation, results in hematopoietic stem cell (HSC) expansion and compromises acute myeloid leukemia. Here we investigate the long-term impact of YTHDF2 deletion on HSC maintenance and multilineage hematopoiesis. We demonstrate that Ythdf2-deficient HSCs from young mice fail upon serial transplantation, display increased abundance of multiple m6A-modified inflammation-related transcripts, and chronically activate proinflammatory pathways. Consistent with the detrimental consequences of chronic activation of inflammatory pathways in HSCs, hematopoiesis-specific Ythdf2 deficiency results in a progressive myeloid bias, loss of lymphoid potential, HSC expansion, and failure of aged Ythdf2-deficient HSCs to reconstitute multilineage hematopoiesis. Experimentally induced inflammation increases YTHDF2 expression, and YTHDF2 is required to protect HSCs from this insult. Thus, our study positions YTHDF2 as a repressor of inflammatory pathways in HSCs and highlights the significance of m6A in long-term HSC maintenance.


Asunto(s)
Adenosina/análogos & derivados , Células Madre Hematopoyéticas/metabolismo , Inflamación/genética , Proteínas de Unión al ARN/metabolismo , Adenosina/metabolismo , Animales , Linaje de la Célula , Proliferación Celular , Senescencia Celular , Eliminación de Gen , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Inflamación/patología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Cell Stem Cell ; 25(1): 137-148.e6, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31031138

RESUMEN

Acute myeloid leukemia (AML) is an aggressive clonal disorder of hematopoietic stem cells (HSCs) and primitive progenitors that blocks their myeloid differentiation, generating self-renewing leukemic stem cells (LSCs). Here, we show that the mRNA m6A reader YTHDF2 is overexpressed in a broad spectrum of human AML and is required for disease initiation as well as propagation in mouse and human AML. YTHDF2 decreases the half-life of diverse m6A transcripts that contribute to the overall integrity of LSC function, including the tumor necrosis factor receptor Tnfrsf2, whose upregulation in Ythdf2-deficient LSCs primes cells for apoptosis. Intriguingly, YTHDF2 is not essential for normal HSC function, with YTHDF2 deficiency actually enhancing HSC activity. Thus, we identify YTHDF2 as a unique therapeutic target whose inhibition selectively targets LSCs while promoting HSC expansion.


Asunto(s)
Leucemia Mieloide Aguda/terapia , Células Madre Neoplásicas/fisiología , Proteínas de Unión al ARN/metabolismo , Animales , Autorrenovación de las Células , Hematopoyesis , Células Madre Hematopoyéticas , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Células THP-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA