Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 941246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873965

RESUMEN

This study aimed to determine the effect of hydrogen sulfide on chilling injury (CI) of banana (Musa spp.) during cold storage (7°C). It was observed that hydrogen sulfide application (2 mmol L-1) markedly reduced the CI index and showed significantly higher chlorophyll contents, along with suppressed chlorophyll peroxidase and chlorophyllase enzyme activity. The treated banana fruits exhibited substantially higher peel lightness (L*), along with significantly a lower browning degree and soluble quinone content. The treated bananas had substantially a higher endogenous hydrogen sulfide content and higher activity of its biosynthesis-associated enzymes such as D-cysteine desulfhydrase (DCD) and L-cysteine desulfhydrase (LCD), along with significantly lower ion leakage, lipid peroxidation, hydrogen peroxide, and superoxide anion concentrations. Hydrogen sulfide-treated banana fruits showed an increased proline content and proline metabolism-associated enzymes including ornithine aminotransferase (OAT), Δ1-pyrroline-5-carboxylate synthetase (P5CS), and proline dehydrogenase (PDH). In the same way, hydrogen sulfide-fumigated banana fruits accumulated higher endogenous γ-aminobutyric acid (GABA) due to enhanced activity of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T) enzymes. The hydrogen sulfide-treated fruits exhibited higher total phenolics owing to lower polyphenol oxidase (PPO) and peroxidase (POD) activity and stimulated phenylalanine ammonia lyase (PAL). The treated banana exhibited higher ascorbate peroxidase (APX), catalase (CAT), glutathione reductase (GR), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR), and superoxide dismutase (SOD) activity, along with higher glutathione (GSH) and ascorbic acid (AsA) concentrations and a significantly lower dehydroascorbic acid (DHA) content. In conclusion, hydrogen sulfide treatment could be utilized for CI alleviation of banana fruits during cold storage.

2.
J Food Sci Technol ; 59(8): 3296-3306, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35876768

RESUMEN

The effect of Aloe vera (AV) gel coating was studied on antioxidant enzymes activities, oxidative stress, softening and associated quality attributes of persimmon fruits. The fruits were coated with 0 and 50% AV-gel coating and stored for 20 days at 20 ± 1 ºC. AV-gel coated fruits exhibited considerably less weight loss, hydrogen peroxide level, electrolyte leakage and malondialdehyde content. AV-gel coated fruits had significantly higher ascorbate peroxidase, peroxidase, superoxide dismutase and catalase activities. In addition, AV-gel coating suppressed pectin methylesterase, polygalacturonase and cellulase activities and showed higher ascorbic acid, DPPH scavenging antioxidants and phenolics, and lower sugars and carotenoids. To the best of our knowledge, these results are the first evidence that AV-gel coating modulates the activities of cell wall degrading enzymes to delay ripening in climacteric fruits. So, AV-gel coating prohibited the onset of senescence by activating enzymatic antioxidant system, accumulating bioactive compounds and suppressing cell wall degradation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05412-5.

3.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066497

RESUMEN

Autophagy is an intracellular process in all eukaryotes which is responsible for the degradation of cytoplasmic constituents, recycling of organelles, and recycling of proteins. It is an important cellular process responsible for the effective virulence of several pathogenic plant fungal strains, having critical impacts on important crop plants including potatoes. However, the detailed physiological mechanisms of autophagy involved in the infection biology of soil-borne pathogens in the potato crop needs to be investigated further. In this study, the autophagy-related gene, FoATG12, in potato dry rot fungus Fusarium oxysporum was investigated by means of target gene replacement and overexpression. The deletion mutant ∆FoATG12 showed reduction in conidial formation and exhibited impaired aerial hyphae. The FoATG12 affected the expression of genes involved in pathogenicity and vegetative growth, as well as on morphology features of the colony under stressors. It was found that the disease symptoms were delayed upon being inoculated by the deletion mutant of FoATG12 compared to the wild-type (WT) and overexpression (OE), while the deletion mutant showed the disease symptoms on tomato plants. The results confirmed the significant role of the autophagy-related ATG12 gene in the production of aerial hyphae and the effective virulence of F. oxysporum in the potato crop. The current findings provid an enhanced gene-level understanding of the autophagy-related virulence of F. oxysporum, which could be helpful in pathogen control research and could have vital impacts on the potato crop.


Asunto(s)
Proteína 12 Relacionada con la Autofagia/genética , Autofagia/genética , Proteínas Fúngicas/genética , Fusarium/citología , Fusarium/genética , Genes Fúngicos , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Proteína 12 Relacionada con la Autofagia/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Hifa/crecimiento & desarrollo , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Esporas Fúngicas/crecimiento & desarrollo , Estrés Fisiológico/genética
4.
J Food Sci Technol ; 51(12): 4078-83, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25477684

RESUMEN

Anthracnose, a postharvest disease caused by the fungus Colletotrichum capsici is the most devastating disease of bell pepper that causes great economic losses especially in tropical climates. Therefore, the objective of this study was to evaluate the antifungal properties of chitosan (low molecular weight from crab shell, Mw: 50 kDa and 75-85 % deacetylated) against anthracnose by inducing defense-related enzymes. The concentrations of 0, 0.5, 1.0, 1.5 and 2.0 % chitosan were used to control the fungus in vitro and postharvest. There was a reduction in C. capsici mycelial growth and the highest chitosan concentration (2.0 %) reduced the growth by 70 % after 7 days incubation. In germination test, the concentration of 1.5 and 2.0 % chitosan reduced spore germination in C. capsici between 80 % and 84 %, respectively. In postharvest trial the concentration of 1.5 % decreased the anthracnose severity in pepper fruit by approximately 76 % after 28 days of storage (10 ± 1 °C; 80 % RH). For enzymatic activities, the concentration of 1.5 and 2.0 % chitosan increased the polyphenol oxidase (PPO), peroxidase (POD) and total phenolics in inoculated bell pepper during storage. Based on these results, the chitosan presents antifungal properties against C. capsici, as well as potential to induce resistance on bell pepper.

5.
J Agric Food Chem ; 59(10): 5474-82, 2011 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-21476593

RESUMEN

The composite effects of gum arabic (GA) (5, 10, 15, and 20%) and chitosan (CH) (1.0%) on the biochemical and physiological characteristics of banana fruits stored at 13 ± 1 °C and 80 ± 3% relative humidity (RH) for 28 days and afterward for 5 days at simulated marketing conditions (25 °C, 60% RH) were investigated. Significant (P ≤ 0.05) differences were observed for the entire GA plus CH treatments as compared to the control. However, the results showed that after 33 days of storage, the weight loss and soluble solids concentration of fruits treated with 10% GA plus 1.0% CH composite coating were 24 and 54% lower, whereas fruit firmness, total carbohydrates, and reducing sugars were 31, 59, and 40% higher than the control, respectively. Furthermore, the composite edible coating of 10% GA plus 1.0% CH delayed color development and reduced the rate of respiration and ethylene evolution during storage as compared to the control. Similarly, sensory evaluation results also proved the effectiveness of 10% GA plus 1.0% CH composite coating by maintaining the overall quality of banana fruits. Consequently, the results of scanning electron microscopy also confirmed that the fruits coated with 10% GA plus 1.0% CH composite edible coating had very fewer cracks and showed a smooth surface. These findings suggest that 10% GA plus 1.0% CH as an edible composite coating can be used commercially for extending the storage life of banana fruits for up to 33 days.


Asunto(s)
Quitosano , Frío , Conservación de Alimentos/métodos , Frutas/química , Goma Arábiga , Musa , Frutas/ultraestructura , Microscopía Electrónica de Rastreo , Control de Calidad , Sensación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...