Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
5.
Curr Biol ; 30(4): 573-588.e7, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32004456

RESUMEN

Genome packaging by nucleosomes is a hallmark of eukaryotes. Histones and the pathways that deposit, remove, and read histone modifications are deeply conserved. Yet, we lack information regarding chromatin landscapes in extant representatives of ancestors of the main groups of eukaryotes, and our knowledge of the evolution of chromatin-related processes is limited. We used the bryophyte Marchantia polymorpha, which diverged from vascular plants circa 400 mya, to obtain a whole chromosome genome assembly and explore the chromatin landscape and three-dimensional genome organization in an early diverging land plant lineage. Based on genomic profiles of ten chromatin marks, we conclude that the relationship between active marks and gene expression is conserved across land plants. In contrast, we observed distinctive features of transposons and other repetitive sequences in Marchantia compared with flowering plants. Silenced transposons and repeats did not accumulate around centromeres. Although a large fraction of constitutive heterochromatin was marked by H3K9 methylation as in flowering plants, a significant proportion of transposons were marked by H3K27me3, which is otherwise dedicated to the transcriptional repression of protein-coding genes in flowering plants. Chromatin compartmentalization analyses of Hi-C data revealed that repressed B compartments were densely decorated with H3K27me3 but not H3K9 or DNA methylation as reported in flowering plants. We conclude that, in early plants, H3K27me3 played an essential role in heterochromatin function, suggesting an ancestral role of this mark in transposon silencing.


Asunto(s)
Cromatina/fisiología , Elementos Transponibles de ADN/fisiología , Embryophyta/fisiología , Evolución Molecular , Heterocromatina/fisiología
6.
Nucleic Acids Res ; 47(2): 941-952, 2019 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-30462257

RESUMEN

RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes.


Asunto(s)
Arabidopsis/enzimología , Endorribonucleasas/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa III/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Humanos , Mutación , Ribonucleasas/genética , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/genética
9.
Nucleic Acids Res ; 45(22): 12963-12973, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244187

RESUMEN

The unicellular photosynthetic organism, Chlamydomonas reinhardtii, represents a powerful model to study mitochondrial gene expression. Here, we show that the 5'- and 3'-extremities of the eight Chlamydomonas mitochondrial mRNAs present two unusual characteristics. First, all mRNAs start primarily at the AUG initiation codon of the coding sequence which is often marked by a cluster of small RNAs. Second, unusual tails are added post-transcriptionally at the 3'-extremity of all mRNAs. The nucleotide composition of the tails is distinct from that described in any other systems and can be partitioned between A/U-rich tails, predominantly composed of Adenosine and Uridine, and C-rich tails composed mostly of Cytidine. Based on 3' RACE experiments, 22% of mRNAs present C-rich tails, some of them composed of up to 20 consecutive Cs. Polycytidylation is specific to mitochondria and occurs primarily on mRNAs. This unprecedented post-transcriptional modification seems to be a specific feature of the Chlorophyceae class of green algae and points out the existence of novel strategies in mitochondrial gene expression.


Asunto(s)
Chlamydomonas reinhardtii/genética , Mitocondrias/genética , ARN Mensajero/genética , Transcripción Genética , Secuencia de Bases , Chlamydomonas reinhardtii/metabolismo , Chlorophyta/clasificación , Chlorophyta/genética , Genoma Mitocondrial/genética , Mitocondrias/metabolismo , Filogenia , Poli C/metabolismo , ARN Mensajero/metabolismo , ARN Mitocondrial , Homología de Secuencia de Ácido Nucleico
10.
Plant J ; 92(6): 1132-1142, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29044717

RESUMEN

Intracellular sorting of mRNAs is an essential process for regulating gene expression and protein localization. Most mitochondrial proteins are nuclear-encoded and imported into the mitochondria through post-translational or co-translational processes. In the latter case, mRNAs are found to be enriched in the vicinity of mitochondria. A genome-scale analysis of mRNAs associated with mitochondria has been performed to determine plant cytosolic mRNAs targeted to the mitochondrial surface. Many messengers encoding mitochondrial proteins were found associated with mitochondria. These mRNAs correspond to particular functions and complexes, such as respiration or mitoribosomes, which indicates a coordinated control of mRNA localization within metabolic pathways. In addition, upstream AUGs in 5' untranslated regions (UTRs), which modulate the translation efficiency of downstream sequences, were found to negatively affect the association of mRNAs with mitochondria. A mutational approach coupled with in vivo mRNA visualization confirmed this observation. Moreover, this technique allowed the identification of 3'-UTRs as another essential element for mRNA localization at the mitochondrial surface. Therefore, this work offers new insights into the mechanism, function and regulation of the association of cytosolic mRNAs with plant mitochondria.


Asunto(s)
Proteínas Mitocondriales/metabolismo , ARN Mensajero/metabolismo , Solanum tuberosum/genética , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Núcleo Celular/metabolismo , Citosol/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Mutación , Transporte de Proteínas , ARN Mensajero/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Ribosomas/metabolismo , Solanum tuberosum/metabolismo
11.
Nucleic Acids Res ; 45(6): 3460-3472, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27899576

RESUMEN

In the expanding repertoire of small noncoding RNAs (ncRNAs), tRNA-derived RNA fragments (tRFs) have been identified in all domains of life. Their existence in plants has been already proven but no detailed analysis has been performed. Here, short tRFs of 19-26 nucleotides were retrieved from Arabidopsis thaliana small RNA libraries obtained from various tissues, plants submitted to abiotic stress or fractions immunoprecipitated with ARGONAUTE 1 (AGO1). Large differences in the tRF populations of each extract were observed. Depending on the tRNA, either tRF-5D (due to a cleavage in the D region) or tRF-3T (via a cleavage in the T region) were found and hot spots of tRNA cleavages have been identified. Interestingly, up to 25% of the tRFs originate from plastid tRNAs and we provide evidence that mitochondrial tRNAs can also be a source of tRFs. Very specific tRF-5D deriving not only from nucleus-encoded but also from plastid-encoded tRNAs are strongly enriched in AGO1 immunoprecipitates. We demonstrate that the organellar tRFs are not found within chloroplasts or mitochondria but rather accumulate outside the organelles. These observations suggest that some organellar tRFs could play regulatory functions within the plant cell and may be part of a signaling pathway.


Asunto(s)
Arabidopsis/genética , Núcleo Celular/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Núcleo Celular/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plastidios/metabolismo , ARN/metabolismo , ARN del Cloroplasto/metabolismo , ARN Mitocondrial , ARN de Transferencia/química , ARN no Traducido/química , Estrés Fisiológico
12.
Plant Physiol ; 172(4): 2471-2490, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27789739

RESUMEN

A variety of eukaryotes, in particular plants, do not contain the required number of tRNAs to support the translation of mitochondria-encoded genes and thus need to import tRNAs from the cytosol. This study identified two Arabidopsis (Arabidopsis thaliana) proteins, Tric1 and Tric2 (for tRNA import component), which on simultaneous inactivation by T-DNA insertion lines displayed a severely delayed and chlorotic growth phenotype and significantly reduced tRNA import capacity into isolated mitochondria. The predicted tRNA-binding domain of Tric1 and Tric2, a sterile-α-motif at the C-terminal end of the protein, was required to restore tRNA uptake ability in mitochondria of complemented plants. The purified predicted tRNA-binding domain binds the T-arm of the tRNA for alanine with conserved lysine residues required for binding. T-DNA inactivation of both Tric proteins further resulted in an increase in the in vitro rate of in organello protein synthesis, which was mediated by a reorganization of the nuclear transcriptome, in particular of genes encoding a variety of proteins required for mitochondrial gene expression at both the transcriptional and translational levels. The characterization of Tric1/2 provides mechanistic insight into the process of tRNA import into mitochondria and supports the theory that the tRNA import pathway resulted from the repurposing of a preexisting protein import apparatus.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocondrias/metabolismo , Transporte de ARN , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/ultraestructura , Unión Proteica , Biosíntesis de Proteínas , Dominios Proteicos , ARN de Transferencia/química , Proteínas de Unión al ARN/metabolismo , Especificidad de la Especie , Transcriptoma/genética
13.
RNA Biol ; 12(10): 1159-68, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26361137

RESUMEN

A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.


Asunto(s)
ADN Mitocondrial/genética , Genoma Mitocondrial , ARN de Transferencia/genética , Animales , Crustáceos/genética , Regulación de la Expresión Génica
14.
Methods Mol Biol ; 1305: 45-60, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25910726

RESUMEN

During evolution, most of the ancestral genes from the endosymbiotic α-proteobacteria at the origin of mitochondria have been either lost or transferred to the nuclear genome. To allow the comeback of proteins and RNAs [in particular transfer RNA (tRNAs)] into the organelle, macromolecule import systems were universally established. While protein import processes have been studied into details, much less is known about tRNA mitochondrial import. In plants, part of the knowledge on the tRNA import process into mitochondria has been acquired thanks to in vitro import assays. Furthermore, the development of in vitro RNA import strategies allowed the study of plant mitochondrial gene expression. The purpose of this chapter is to provide detailed protocols to perform in vitro RNA uptake into potato (Solanum tuberosum) or Arabidopsis (Arabidopsis thaliana) mitochondria as well as approaches to analyze them.


Asunto(s)
Arabidopsis/metabolismo , Mitocondrias/metabolismo , ARN de Planta/metabolismo , ARN de Transferencia/metabolismo , Solanum tuberosum/metabolismo , Arabidopsis/genética , Electroforesis en Gel de Poliacrilamida/métodos , Mitocondrias/genética , Transporte de ARN , ARN de Planta/genética , ARN de Transferencia/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Solanum tuberosum/genética , Transcripción Genética
15.
Int J Mol Sci ; 16(1): 1873-93, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25599528

RESUMEN

Beyond their central role in protein synthesis, transfer RNAs (tRNAs) have many other crucial functions. This includes various roles in the regulation of gene expression, stress responses, metabolic processes and priming reverse transcription. In the RNA world, tRNAs are, with ribosomal RNAs, among the most stable molecules. Nevertheless, they are not eternal. As key elements of cell function, tRNAs need to be continuously quality-controlled. Two tRNA surveillance pathways have been identified. They act on hypo-modified or mis-processed pre-tRNAs and on mature tRNAs lacking modifications. A short overview of these two pathways will be presented here. Furthermore, while the exoribonucleases acting in these pathways ultimately lead to complete tRNA degradation, numerous tRNA-derived fragments (tRFs) are present within a cell. These cleavage products of tRNAs now potentially emerge as a new class of small non-coding RNAs (sncRNAs) and are suspected to have important regulatory functions. The tRFs are evolutionarily widespread and created by cleavage at different positions by various endonucleases. Here, we review our present knowledge on the biogenesis and function of tRFs in various organisms.


Asunto(s)
Células Eucariotas/metabolismo , ARN de Transferencia/metabolismo , Endonucleasas/metabolismo , Estabilidad del ARN , ARN no Traducido/metabolismo
16.
Nucleic Acids Res ; 42(15): 9937-48, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25114051

RESUMEN

In plants, the voltage-dependent anion-selective channel (VDAC) is a major component of a pathway involved in transfer RNA (tRNA) translocation through the mitochondrial outer membrane. However, the way in which VDAC proteins interact with tRNAs is still unknown. Potato mitochondria contain two major mitochondrial VDAC proteins, VDAC34 and VDAC36. These two proteins, composed of a N-terminal α-helix and of 19 ß-strands forming a ß-barrel structure, share 75% sequence identity. Here, using both northwestern and gel shift experiments, we report that these two proteins interact differentially with nucleic acids. VDAC34 binds more efficiently with tRNAs or other nucleic acids than VDAC36. To further identify specific features and critical amino acids required for tRNA binding, 21 VDAC34 mutants were constructed and analyzed by northwestern. This allowed us to show that the ß-barrel structure of VDAC34 and the first 50 amino acids that contain the α-helix are essential for RNA binding. Altogether the work shows that during evolution, plant mitochondrial VDAC proteins have diverged so as to interact differentially with nucleic acids, and this may reflect their involvement in various specialized biological functions.


Asunto(s)
Proteínas Mitocondriales/química , Proteínas de Plantas/química , ARN de Transferencia/metabolismo , Canales Aniónicos Dependientes del Voltaje/química , ADN de Plantas/metabolismo , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Proteínas de Plantas/metabolismo , Unión Proteica , Isoformas de Proteínas/metabolismo , ARN de Planta/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
17.
Proc Natl Acad Sci U S A ; 111(24): 8991-6, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889622

RESUMEN

Intracellular targeting of mRNAs has recently emerged as a prevalent mechanism to control protein localization. For mitochondria, a cotranslational model of protein import is now proposed in parallel to the conventional posttranslational model, and mitochondrial targeting of mRNAs has been demonstrated in various organisms. Voltage-dependent anion channels (VDACs) are the most abundant proteins in the outer mitochondrial membrane and the major transport pathway for numerous metabolites. Four nucleus-encoded VDACs have been identified in Arabidopsis thaliana. Alternative cleavage and polyadenylation generate two VDAC3 mRNA isoforms differing by their 3' UTR. By using quantitative RT-PCR and in vivo mRNA visualization approaches, the two mRNA variants were shown differentially associated with mitochondria. The longest mRNA presents a 3' extension named alternative UTR (aUTR) that is necessary and sufficient to target VDAC3 mRNA to the mitochondrial surface. Moreover, aUTR is sufficient for the mitochondrial targeting of a reporter transcript, and can be used as a tool to target an unrelated mRNA to the mitochondrial surface. Finally, VDAC3-aUTR mRNA variant impacts mitochondria morphology and size, demonstrating the role of mRNA targeting in mitochondria biogenesis.


Asunto(s)
Proteínas de Arabidopsis/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Isoformas de ARN , Canales Aniónicos Dependientes del Voltaje/genética , Regiones no Traducidas 3' , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Genes de Plantas , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Mutación , Fenotipo , Porinas/metabolismo , Transporte de Proteínas , ARN Mensajero/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
18.
Biochimie ; 100: 95-106, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440477

RESUMEN

Mitochondria originate from the α-proteobacterial domain of life. Since this unique event occurred, mitochondrial genomes of protozoans, fungi, plants and metazoans have highly derived and diverged away from the common ancestral DNA. These resulting genomes highly differ from one another, but all present-day mitochondrial DNAs have a very reduced coding capacity. Strikingly however, ATP production coupled to electron transport and translation of mitochondrial proteins are the two common functions retained in all mitochondrial DNAs. Paradoxically, most components essential for these two functions are now expressed from nuclear genes. Understanding how mitochondrial translation evolved in various eukaryotic models is essential to acquire new knowledge of mitochondrial genome expression. In this review, we provide a thorough analysis of the idiosyncrasies of mitochondrial translation as they occur between organisms. We address this by looking at mitochondrial codon usage and tRNA content. Then, we look at the aminoacyl-tRNA-forming enzymes in terms of peculiarities, dual origin, and alternate function(s). Finally we give examples of the atypical structural properties of mitochondrial tRNAs found in some organisms and the resulting adaptive tRNA-protein partnership.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Genoma Mitocondrial , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Biosíntesis de Proteínas , Adenosina Trifosfato/biosíntesis , Alveolados/genética , Alveolados/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Bacterias/genética , Bacterias/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Codón , Regulación de la Expresión Génica , Humanos , Mitocondrias/genética , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , ARN de Transferencia/química , ARN de Transferencia/metabolismo
19.
Biochimie ; 100: 159-66, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24252184

RESUMEN

Mitochondria contain hundreds of proteins but only a few are encoded by the mitochondrial genome. The other proteins are nuclear-encoded and imported into mitochondria. These proteins can be translated on free cytosolic polysomes, then targeted and imported into mitochondria. Nonetheless, numerous cytosolic mRNAs encoding mitochondrial proteins are detected at the surface of mitochondria in yeast, plants and animals. The localization of mRNAs to the vicinity of mitochondria would be a way for mitochondrial protein sorting. The mechanisms responsible for mRNA targeting to mitochondria are not clearly identified. Sequences within the mRNA molecules (cis-elements), as well as a few trans-acting factors, have been shown to be essential for targeting of some mRNAs. In order to identify receptors involved in mRNA docking to the mitochondrial surface, we have developed an in vitro mRNA binding assay with isolated plant mitochondria. We show that naked mRNAs are able to bind to isolated mitochondria, and our results strongly suggest that mRNA docking to the plant mitochondrial outer membrane requires at least one component of TOM complex.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ARN Mensajero/metabolismo , ARN/metabolismo , Solanum tuberosum/metabolismo , Sitios de Unión , Transporte Biológico , Citosol/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Células Vegetales/metabolismo , Tubérculos de la Planta/citología , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Unión Proteica , ARN/química , ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , ARN Mitocondrial , Solanum tuberosum/citología , Solanum tuberosum/genética , Transcripción Genética , Canales Aniónicos Dependientes del Voltaje/genética , Canales Aniónicos Dependientes del Voltaje/metabolismo
20.
Biochimie ; 100: 207-18, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24139906

RESUMEN

Genetic manipulation of the unicellular green alga Chlamydomonas reinhardtii is straightforward. Nuclear genes can be interrupted by insertional mutagenesis or targeted by RNA interference whereas random or site-directed mutagenesis allows the introduction of mutations in the mitochondrial genome. This, combined with a screen that easily allows discriminating respiratory-deficient mutants, makes Chlamydomonas a model system of choice to study mitochondria biology in photosynthetic organisms. Since the first description of Chlamydomonas respiratory-deficient mutants in 1977 by random mutagenesis, many other mutants affected in mitochondrial components have been characterized. These respiratory-deficient mutants increased our knowledge on function and assembly of the respiratory enzyme complexes. More recently some of these mutants allowed the study of mitochondrial gene expression processes poorly understood in Chlamydomonas. In this review, we update the data concerning the respiratory components with a special focus on the assembly factors identified on other organisms. In addition, we make an inventory of different mitochondrial respiratory mutants that are inactivated either on mitochondrial or nuclear genes.


Asunto(s)
Proteínas Algáceas/genética , Chlamydomonas reinhardtii/genética , Complejo I de Transporte de Electrón/genética , Transporte de Electrón/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Algáceas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Chlamydomonas reinhardtii/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutagénesis Insercional , Mutagénesis Sitio-Dirigida , Fotosíntesis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...