Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 856(Pt 1): 159018, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36167139

RESUMEN

Increasing the overall use efficiency of nitrogen (N) and phosphorus (P) resources in food production while minimizing losses to the environment are required to meet the dual challenge of food security and sustainability. Yet studies quantifying the overall performance of different agro-system types and how these have changed over time remain rare, although they are essential to propose solution pathways. Here, we reconstructed fluxes of N and P within 78 watersheds of the St. Lawrence Basin (SLB) of eastern Canada between 1901 and 2011, using the Generalized Representation of Agro-Food System model (GRAFS). This analysis allowed us to classify different agro-food system types and to evaluate how agricultural specialization influenced nutrient efficiencies and potential losses to the environment over time. Using a cluster analysis, we identified four agro-food system types with different overall outcomes in efficiencies and losses. We show that agricultural practices in the SLB were similar until the 1950's and deemed unsustainable in several watersheds by depleting agricultural soils of their nutrients (particularly N). With the advent of manufactured fertilizers and the intensification of livestock farming, the SLB then rapidly shifted through the 1970s and 1980s to more intensified and highly unsustainable agro-food system types, where, in 2011, ~77 % of N and ~ 94 % of P inputs were lost to the environment. We also show that nutrient pollution continued to increase despite gains in the nutrient use efficiency of animal farming due to higher nutrient throughput from intensive production. The increased proportion of confined animals, disconnected from croplands, indeed resulted in inefficient nutrient recycling. While nutrient use efficiency may mitigate nutrient pollution, reducing the absolute nutrient flux through agro-food systems should be a priority, likely through a reconnection of crop and animal farming and an overall reduction of meat production, specifically from concentrated, intensive livestock systems.


Asunto(s)
Agricultura , Fósforo , Animales , Agricultura/métodos , Fertilizantes , Nitrógeno , Ganado , Nutrientes
2.
Microb Ecol ; 31(2): 141-51, 1996 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24185738

RESUMEN

Viruses were found to be very abundant in the top layer of the sediments of Lac Gilbert, Québec. Viruses were extracted from the sediments using pyrophosphate buffer, and viruses from the diluted extracts were pelleted onto grids and enumerated using transmission electron microscopy. Viral abundance in the sediments ranged from 6.5 × 10(8) to 1.83 × 10(10) ml(-1), which is 10- to 1,000-fold greater than the number observed in the water column. This increase corresponds well with the 100- to 1,000-fold increase in bacterial abundance in the sediments. Viral abundance differed significantly among the surface sediment samples taken at different bottom depths and among samples taken at different depths of the water column. Viral abundance also varied significantly between the oxic and anoxic zones of the water column and the sediments. The virus-to-bacteria ratio varied greatly among the different sediment sites but not among depths in the water column. Viral abundance in the water column was related to bacterial abundance and chlorophyll concentration, whereas viruses in the sediments were most abundant in sediments with high organic matter content. Elevated viral abundance and their erratic distribution in the sediments suggest that viruses might play an important role in sediment microbial dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...