Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 72
1.
Ann Rheum Dis ; 2024 May 22.
Article En | MEDLINE | ID: mdl-38777379

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

2.
Cancer Immunol Immunother ; 69(10): 1959-1972, 2020 Oct.
Article En | MEDLINE | ID: mdl-32388678

Cancer vaccine development has proven challenging with the exception of some virally induced cancers for which prophylactic vaccines exist. Currently, there is only one FDA approved vaccine for the treatment of prostate cancer and as such prostate cancer continues to present a significant unmet medical need. In this study, we examine the effectiveness of a therapeutic cancer vaccine that combines the ISCOMATRIX™ adjuvant (ISCOMATRIX) with the Toll-like receptor 3 agonist, polyinosinic-polycytidylic acid (Poly I:C), and Flt3L, FMS-like tyrosine kinase 3 ligand. We employed the TRAMP-C1 (transgenic adenocarcinoma of the mouse prostate) model of prostate cancer and the self-protein mPAP (prostatic acid phosphatase) as the tumor antigen. ISCOMATRIX™-mPAP-Poly I:C-Flt3L was delivered in a therapeutic prime-boost regime that was consistently able to achieve complete tumor regression in 60% of animals treated and these tumor-free animals were protected upon rechallenge. Investigations into the underlying immunological mechanisms contributing to the effectiveness of this vaccine identified that both innate and adaptive responses are elicited and required. NK cells, CD4+ T cells and interferon-γ were all found to be critical for tumor control while tumor infiltrating CD8+ T cells became disabled by an immunosuppressive microenvironment. There is potential for broader application of this cancer vaccine, as we have been able to demonstrate effectiveness in two additional cancer models; melanoma (B16-OVA) and a model of B cell lymphoma (Eµ-myc-GFP-OVA).


Adjuvants, Immunologic/administration & dosage , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma, Experimental/immunology , Phospholipids/administration & dosage , Prostatic Neoplasms/immunology , Saponins/administration & dosage , Animals , Apoptosis , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation , Disease Models, Animal , Drug Combinations , Humans , Interferon-gamma/metabolism , Male , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Membrane Proteins/immunology , Mice , Mice, Inbred C57BL , Ovalbumin/immunology , Poly I-C/administration & dosage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
3.
J Immunother Cancer ; 8(1)2020 04.
Article En | MEDLINE | ID: mdl-32317292

BACKGROUND: To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS: Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS: The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (p≤0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS: The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse.


Adjuvants, Immunologic/administration & dosage , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma/therapy , Neoplasm Recurrence, Local/epidemiology , Phospholipids/administration & dosage , Saponins/administration & dosage , Skin Neoplasms/therapy , Adjuvants, Immunologic/adverse effects , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biopsy , Cancer Vaccines/adverse effects , Cancer Vaccines/genetics , Cancer Vaccines/immunology , Chemotherapy, Adjuvant/adverse effects , Chemotherapy, Adjuvant/methods , Cholesterol/adverse effects , Dermatologic Surgical Procedures , Disease-Free Survival , Double-Blind Method , Drug Combinations , Female , Follow-Up Studies , Humans , Immunogenicity, Vaccine , Male , Melanoma/diagnosis , Melanoma/immunology , Melanoma/mortality , Membrane Proteins/genetics , Membrane Proteins/immunology , Middle Aged , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/prevention & control , Neoplasm Staging , Phospholipids/adverse effects , Saponins/adverse effects , Skin/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/immunology , Skin Neoplasms/mortality
4.
Science ; 367(6478)2020 02 07.
Article En | MEDLINE | ID: mdl-31919129

Gamma delta (γδ) T cells are essential to protective immunity. In humans, most γδ T cells express Vγ9Vδ2+ T cell receptors (TCRs) that respond to phosphoantigens (pAgs) produced by cellular pathogens and overexpressed by cancers. However, the molecular targets recognized by these γδTCRs are unknown. Here, we identify butyrophilin 2A1 (BTN2A1) as a key ligand that binds to the Vγ9+ TCR γ chain. BTN2A1 associates with another butyrophilin, BTN3A1, and these act together to initiate responses to pAg. Furthermore, binding of a second ligand, possibly BTN3A1, to a separate TCR domain incorporating Vδ2 is also required. This distinctive mode of Ag-dependent T cell activation advances our understanding of diseases involving pAg recognition and creates opportunities for the development of γδ T cell-based immunotherapies.


Antigens, Neoplasm/immunology , Butyrophilins/immunology , Receptors, Antigen, T-Cell, gamma-delta/immunology , T-Lymphocytes/immunology , Antigens, CD/chemistry , Antigens, CD/immunology , Butyrophilins/chemistry , Butyrophilins/genetics , Cell Line, Tumor , Humans , Ligands , Lymphocyte Activation , Phosphorylation , Protein Domains , Protein Multimerization
5.
J Thromb Haemost ; 18(1): 201-216, 2020 01.
Article En | MEDLINE | ID: mdl-31556206

BACKGROUND: Plasma-derived (pd) or recombinant (r) therapeutic factor VIII proteins (FVIIIs) are infused to arrest/prevent bleeding in patients with hemophilia A (PWHA). However, FVIIIs are neutralized if anti-FVIII-antibodies (inhibitors) develop. Accumulating evidence suggests that pdFVIIIs with von Willebrand factor (VWF) are less immunogenic than rFVIIIs and that distinct rFVIIIs are differentially immunogenic. Since inhibitor development is T-helper-cell-dependent, human leukocyte antigen (HLA)-class-II (HLAcII) molecules constitute an important early determinant. OBJECTIVES: Use dendritic cell (DC)-protein processing/presentation assays with mass-spectrometric and peptide-proteomic analyses to quantify the DP-bound, DQ-bound, and DR-bound FVIII-derived peptides in individual HLAcII repertoires and compare the immunogenic potential of six distinct FVIIIs based on their measured peptide counts. PATIENTS/METHODS: Monocyte-derived DCs from normal donors and/or PWHA were cultured with either: Mix-rFVIII, a VWF-free equimolar mixture of a full-length (FL)-rFVIII [Advate® (Takeda)] and four distinct B-domain-deleted (BDD)-rFVIIIs [Xyntha® (Pfizer), NovoEight® (Novo-Nordisk), Nuwiq® (Octapharma), and Afstyla® (CSL Behring GmBH)]; a pdFVIII + pdVWF [Beriate® (CSL Behring GmBH)]; Advate ± pdVWF; Afstyla ± pdVWF; and Xyntha + pdVWF. RESULTS: We showed that (i) Beriate had a significantly lower immunogenic potential than Advate ± pdVWF, Afstyla - pdVWF, and Mix-rFVIII; (ii) distinct FVIIIs differed significantly in their immunogenic potential in that, in addition to (i), Afstyla + pdVWF had a significantly lower immunogenic potential than Beriate, while the immunogenic potential of Beriate was not significantly different from that of Xyntha + pdVWF; and (iii) rFVIIIs with pdVWF had significantly lower immunogenic potentials than the same rFVIIIs without pdVWF. CONCLUSIONS: Our results provide HLAcII peptidomic level explanations for several important clinical observations/issues including the differential immunogenicity of distinct FVIIIs and the role of HLAcII genetics in inhibitor development.


Factor VIII , Hemophilia A , Dendritic Cells , HLA Antigens , Hemophilia A/drug therapy , Humans , Proteomics
6.
Blood Adv ; 3(9): 1429-1440, 2019 05 14.
Article En | MEDLINE | ID: mdl-31053570

The immunogenicity of protein therapeutics is an important safety and efficacy concern during drug development and regulation. Strategies to identify individuals and subpopulations at risk for an undesirable immune response represent an important unmet need. The major histocompatibility complex (MHC)-associated peptide proteomics (MAPPs) assay directly identifies the presence of peptides derived from a specific protein therapeutic on a donor's MHC class II (MHC-II) proteins. We applied this technique to address several questions related to the use of factor VIII (FVIII) replacement therapy in the treatment of hemophilia A (HA). Although >12 FVIII therapeutics are marketed, most fall into 3 categories: (i) human plasma-derived FVIII (pdFVIII), (ii) full-length (FL)-recombinant FVIII (rFVIII; FL-rFVIII), and (iii) B-domain-deleted rFVIII. Here, we investigated whether there are differences between the FVIII peptides found on the MHC-II proteins of the same individual when incubated with these 3 classes. Based on several observational studies and a prospective, randomized, clinical trial showing that the originally approved rFVIII products may be more immunogenic than the pdFVIII products containing von Willebrand factor (VWF) in molar excess, it has been hypothesized that the pdFVIII molecules yield/present fewer peptides (ie, potential T-cell epitopes). We have experimentally tested this hypothesis and found that dendritic cells from HA patients and healthy donors present fewer FVIII peptides when administered pdFVIII vs FL-rFVIII, despite both containing the same molar VWF excess. Our results support the hypothesis that synthesis of pdFVIII under physiological conditions could result in reduced heterogeneity and/or subtle differences in structure/conformation which, in turn, may result in reduced FVIII proteolytic processing relative to FL-rFVIII.


Dendritic Cells/immunology , Factor VIII/immunology , Hemophilia A/immunology , Peptides/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Epitopes/chemistry , Epitopes/immunology , Factor VIII/chemistry , Factor VIII/therapeutic use , HLA-DP Antigens/chemistry , HLA-DP Antigens/metabolism , HLA-DQ Antigens/chemistry , HLA-DQ Antigens/metabolism , HLA-DR Antigens/chemistry , HLA-DR Antigens/metabolism , Hemophilia A/drug therapy , Humans , Leukocytes, Mononuclear/cytology , Peptide Mapping , Peptides/chemistry , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism
7.
Clin Transl Immunology ; 8(12): e01097, 2019.
Article En | MEDLINE | ID: mdl-31890206

OBJECTIVES: Plasmacytoid dendritic cells (pDCs), through the production of type 1 interferons (IFNs) and other cytokines, are major contributors to systemic lupus erythematosus (SLE) pathogenesis. IL-3 promotes pDC survival, but its role in SLE is not well characterised. This study investigated serum IL-3 and IFN levels, and a whole blood 'IL-3 gene signature', in human SLE. METHODS: Serum cytokine levels were measured by ELISA in n = 42 SLE patients, and n = 44 healthy donors. IL-3-regulated genes were determined by RNASeq of healthy donor whole blood cells (WBCs) stimulated in vitro with IL-3 for 6 or 24 h. Whole blood cell RNASeq analysis was undertaken in a separate cohort of n = 31 SLE patients, and n = 28 healthy donors. RESULTS: Serum IL-3 levels correlated with IFNα (r = 0.612, 95% CI 0.455-0.733, P < 0.001) and type III IFN (r = 0.585, 95% CI 0.406-0.720, P < 0.0001). IL-3 stimulation of WBC in vitro altered 794 genes (-1 ≥ logFC ≥ 1, FDR < 0.05), of which 35 overlapped with genes differentially expressed between SLE and healthy donors. These 35 genes were expressed in 27/31 SLE donors, revealing the presence of an 'IL-3 gene signature'. There was strong correlation between the IL-3 signature and an IFN signature, as determined by hierarchical clustering of the 500 most variable genes in SLE donors (r = 0.939, 95% CI 0.898-0.964, P < 0.0001). CONCLUSION: A dual IL-3/IFN gene signature is a feature of SLE. An association between IL-3 and IFN raises the possibility that dual blockade of IL-3 and IFN may be especially useful for SLE patients with this dual cytokine gene signature.

8.
Clin Transl Immunology ; 8(12): e01093, 2019.
Article En | MEDLINE | ID: mdl-31921420

OBJECTIVES: Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease that is difficult to treat. There is currently no optimal stratification of patients with SLE, and thus, responses to available treatments are unpredictable. Here, we developed a new stratification scheme for patients with SLE, based on the computational analysis of patients' whole-blood transcriptomes. METHODS: We applied machine learning approaches to RNA-sequencing (RNA-seq) data sets to stratify patients with SLE into four distinct clusters based on their gene expression profiles. A meta-analysis on three recently published whole-blood RNA-seq data sets was carried out, and an additional similar data set of 30 patients with SLE and 29 healthy donors was incorporated in this study; a total of 161 patients with SLE and 57 healthy donors were analysed. RESULTS: Examination of SLE clusters, as opposed to unstratified SLE patients, revealed underappreciated differences in the pattern of expression of disease-related genes relative to clinical presentation. Moreover, gene signatures correlated with flare activity were successfully identified. CONCLUSION: Given that SLE disease heterogeneity is a key challenge hindering the design of optimal clinical trials and the adequate management of patients, our approach opens a new possible avenue addressing this limitation via a greater understanding of SLE heterogeneity in humans. Stratification of patients based on gene expression signatures may be a valuable strategy allowing the identification of separate molecular mechanisms underpinning disease in SLE. Further, this approach may have a use in understanding the variability in responsiveness to therapeutics, thereby improving the design of clinical trials and advancing personalised therapy.

9.
Front Immunol ; 9: 2684, 2018.
Article En | MEDLINE | ID: mdl-30524434

Dendritic cell activation of CD4 T cells in the lymph node draining a site of infection or vaccination is widely considered the central event in initiating adaptive immunity. The accepted dogma is that this occurs by stimulating local activation and antigen acquisition by dendritic cells, with subsequent lymph node migration, however the generalizability of this mechanism is unclear. Here we show that in some circumstances antigen can bypass the injection site inflammatory response, draining freely and rapidly to the lymph nodes where it interacts with subcapsular sinus (SCS) macrophages resulting in their death. Debris from these dying SCS macrophages is internalized by monocytes recruited from the circulation. This coordinated response leads to antigen presentation by monocytes and interactions with naïve CD4 T cells that can drive the initiation of T cell and B cell responses. These studies demonstrate an entirely novel pathway leading to initiation of adaptive immune responses in vivo.


Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Lymph Nodes/immunology , Macrophages/immunology , Monocytes/immunology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/cytology , Lymph Nodes/cytology , Macrophages/cytology , Mice , Mice, Transgenic , Monocytes/cytology
10.
Immunotherapy ; 9(3): 249-259, 2017 03.
Article En | MEDLINE | ID: mdl-28183192

AIM: Pilot clinical trial of NY-ESO-1 (ESO) protein in ISCOMATRIX™ adjuvant pulsed onto peripheral blood dendritic cells (PBDC), to ascertain feasibility, evaluate toxicity and assess induction of ESO-specific immune responses. PATIENTS & METHODS: Eligible participants had resected cancers expressing ESO or LAGE-1 and were at high risk of relapse. PBDC were produced using CliniMACS®plus, with initial depletion of CD1c+ B cells followed by positive selection of CD1c+ PBDC. Patients received three intradermal vaccinations of ESO/IMX-pulsed PBDC at 4-week intervals. RESULTS: The process was feasible and safe. No vaccine-induced immune responses were detected. Assays of immunomodulatory cells did not correlate with outcomes. One patient had a long lasting complete remission. CONCLUSION: This method was feasible and safe but was minimally immunogenic.


Blood Cells/physiology , Cancer Vaccines/immunology , Carcinoma, Basal Cell/therapy , Dendritic Cells/physiology , Immunotherapy/methods , Skin Neoplasms/therapy , T-Lymphocytes/immunology , Aged , Antigen Presentation , Antigens, CD1/metabolism , Antigens, Neoplasm/metabolism , Blood Cells/transplantation , Carcinoma, Basal Cell/immunology , Carcinoma, Basal Cell/pathology , Cells, Cultured , Cholesterol/metabolism , Dendritic Cells/transplantation , Drug Combinations , Female , Follow-Up Studies , Glycoproteins/metabolism , Humans , Immunity, Humoral , Lymphocyte Activation , Male , Membrane Proteins/metabolism , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Phospholipids/metabolism , Pilot Projects , Saponins/metabolism , Skin Neoplasms/immunology , Skin Neoplasms/pathology , Treatment Outcome
11.
JCI Insight ; 1(6): e86131, 2016 05 05.
Article En | MEDLINE | ID: mdl-27699260

To date, the major target of biologic therapeutics in systemic lupus erythematosus (SLE) has been the B cell, which produces pathogenic autoantibodies. Recently, targeting type I IFN, which is elaborated by plasmacytoid dendritic cells (pDCs) in response to endosomal TLR7 and TLR9 stimulation by SLE immune complexes, has shown promising results. pDCs express high levels of the IL-3Rα chain (CD123), suggesting an alternative potential targeting strategy. We have developed an anti-CD123 monoclonal antibody, CSL362, and show here that it affects key cell types and cytokines that contribute to SLE. CSL362 potently depletes pDCs via antibody-dependent cell-mediated cytotoxicity, markedly reducing TLR7, TLR9, and SLE serum-induced IFN-α production and IFN-α-upregulated gene expression. The antibody also inhibits TLR7- and TLR9-induced plasmablast expansion by reducing IFN-α and IL-6 production. These effects are more pronounced than with IFN-α blockade alone, possibly because pDC depletion reduces production of other IFN subtypes, such as type III, as well as non-IFN proinflammatory cytokines, such as IL-6. In addition, CSL362 depletes basophils and inhibits IL-3 signaling. These effects were confirmed in cells derived from a heterogeneous population of SLE donors, various IFN-dependent autoimmune diseases, and healthy controls. We also demonstrate in vivo activity of CSL362 following its s.c. administration to cynomolgus monkeys. This spectrum of effects provides a preclinical rationale for the therapeutic evaluation of CSL362 in SLE.


Antibodies, Monoclonal/therapeutic use , Dendritic Cells/immunology , Interleukin-3 Receptor alpha Subunit/immunology , Lupus Erythematosus, Systemic/therapy , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex , Cells, Cultured , Humans , Interferon-alpha/blood , Interleukin-6/immunology , Lupus Erythematosus, Systemic/immunology , Toll-Like Receptor 7/immunology , Toll-Like Receptor 9/immunology
12.
Am J Pathol ; 186(1): 172-84, 2016 Jan.
Article En | MEDLINE | ID: mdl-26718978

Granulocyte colony-stimulating factor (G-CSF) is a regulator of neutrophil production, function, and survival. Herein, we investigated the role of G-CSF in a murine model of human uveitis-experimental autoimmune uveoretinitis. Experimental autoimmune uveoretinitis was dramatically reduced in G-CSF-deficient mice and in anti-G-CSF monoclonal antibody-treated, wild-type (WT) mice. Flow cytometric analysis of the ocular infiltrate in WT mice with experimental autoimmune uveoretinitis showed a mixed population, comprising neutrophils, macrophages, and T cells. The eyes of G-CSF-deficient and anti-G-CSF monoclonal antibody-treated WT mice had minimal neutrophil infiltrate, but no change in other myeloid-derived inflammatory cells. Antigen-specific T-cell responses were maintained, but the differentiation of pathogenic type 17 helper T cells in experimental autoimmune uveoretinitis was reduced with G-CSF deficiency. We show that G-CSF controls the ocular neutrophil infiltrate by modulating the expression of C-X-C chemokine receptors 2 and 4 on peripheral blood neutrophils, as well as actin polymerization and migration. These data reveal an integral role for G-CSF-driven neutrophil responses in ocular autoimmunity, operating within and outside of the bone marrow, and also identify G-CSF as a potential therapeutic target in the treatment of human uveoretinitis.


Autoimmune Diseases/immunology , Granulocyte Colony-Stimulating Factor/immunology , Neutrophils/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/pathology , Blotting, Western , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred C57BL , Uveitis/pathology
13.
J Immunol ; 194(5): 2199-207, 2015 Mar 01.
Article En | MEDLINE | ID: mdl-25646304

The development of therapeutic vaccines for treatment of established cancer has proven challenging. Cancer vaccines not only need to induce a robust tumor Ag-specific immune response but also need to overcome the tolerogenic and immunosuppressive microenvironments that exist within many solid cancers. ISCOMATRIX adjuvant (ISCOMATRIX) is able to induce both tumor Ag-specific cellular and Ab responses to protect mice against tumor challenge, but this is insufficient to result in regression of established solid tumors. In the current study, we have used B16-OVA melanoma, Panc-OVA pancreatic, and TRAMP-C1 prostate cancer mouse tumor models to test therapeutic efficacy of ISCOMATRIX vaccines combined with other immune modulators. The coadministration of an ISCOMATRIX vaccine with the TLR3 agonist, polyinosinic-polycytidylic acid, and TLR9 agonist, CpG, reduced tumor growth in all tumor models and the presence of ISCOMATRIX in the formulation was critical for the therapeutic efficacy of the vaccine. This vaccine combination induced a robust and multifunctional CD8(+) T cell response. Therapeutic protection required IFN-γ and CD8(+) T cells, whereas NK and CD4(+) T cells were found to be redundant. ISCOMATRIX vaccines combined with TLR3 and TLR9 agonists represent a promising cancer immunotherapy strategy.


CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/administration & dosage , Cholesterol/administration & dosage , Melanoma, Experimental/therapy , Pancreatic Neoplasms/therapy , Phospholipids/administration & dosage , Prostatic Neoplasms/therapy , Saponins/administration & dosage , Skin Neoplasms/therapy , Adjuvants, Immunologic/administration & dosage , Animals , CD8-Positive T-Lymphocytes/immunology , Cytotoxicity, Immunologic , Drug Combinations , Humans , Immunotherapy/methods , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/mortality , Mice , Mice, Knockout , Neoplasm Transplantation , Oligodeoxyribonucleotides/pharmacology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/mortality , Poly I-C/pharmacology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/immunology , Prostatic Neoplasms/mortality , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Survival Analysis , Toll-Like Receptor 3/antagonists & inhibitors , Toll-Like Receptor 3/genetics , Toll-Like Receptor 3/immunology , Toll-Like Receptor 9/antagonists & inhibitors , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/immunology , Tumor Burden/drug effects
14.
Cancer Immunol Immunother ; 64(4): 507-18, 2015 Apr.
Article En | MEDLINE | ID: mdl-25662405

Clinical outcomes from cancer vaccine trials in patients with advanced melanoma have so far been disappointing. This appears at least partially due to a state of immunosuppression in these patients induced by an expansion of regulatory cell populations including regulatory T cells (Tregs). We have previously demonstrated potent immunogenicity of the NY-ESO-1/ISCOMATRIX™ vaccine in patients with resected melanoma (study LUD99-08); however, the same vaccine induced only a few vaccine antigen-specific immune responses in patients with advanced disease (study LUD2002-013). Pre-clinical models suggest that the alkylating agent cyclophosphamide can enhance immune responses by depleting Tregs. Therefore, we have enrolled a second cohort of patients with advanced melanoma in the clinical trial LUD2002-013 to investigate whether pre-treatment with cyclophosphamide could improve the immunogenicity of the NY-ESO-1/ISCOMATRIX™ vaccine. The combination treatment led to a significant increase in vaccine-induced NY-ESO-1-specific CD4(+) T cell responses compared with the first trial cohort treated with vaccine alone. We could not detect a significant decline in regulatory T cells in peripheral blood of patients 14 days after cyclophosphamide administration, although a decline at an earlier time point cannot be excluded. Our observations support the inclusion of cyclophosphamide in combination trials with vaccines and other immune-modulatory agents.


Antigens, Neoplasm/immunology , Antineoplastic Agents, Alkylating/administration & dosage , CD4-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Cholesterol/immunology , Cyclophosphamide/administration & dosage , Melanoma/therapy , Membrane Proteins/immunology , Phospholipids/immunology , Saponins/immunology , Adult , Aged , Aged, 80 and over , Cancer Vaccines/immunology , Cohort Studies , Combined Modality Therapy , Dose-Response Relationship, Drug , Drug Combinations , Female , Follow-Up Studies , Humans , Lymphatic Metastasis , Male , Melanoma/immunology , Melanoma/secondary , Middle Aged , Neoplasm Staging , Prognosis , T-Lymphocytes, Regulatory/immunology
15.
Cancer Res ; 74(18): 5019-5031, 2014 Sep 15.
Article En | MEDLINE | ID: mdl-25038228

Natural killer (NK) cells are critical for innate tumor immunity due to their specialized ability to recognize and kill neoplastically transformed cells. However, NK cells require a specific set of cytokine-mediated signals to achieve optimal effector function. Th1-associated cytokines promote effector functions that are inhibited by the prototypic Th2 cytokine IL4 and the TGFß superfamily members TGFß1 and activin-A. Interestingly, the largest subgroup of the TGFß superfamily are the bone morphogenetic proteins (BMP), but the effects of BMP signaling on NK cell effector functions have not been evaluated. Here, we demonstrate that blood-circulating NK cells express type I and II BMP receptors, BMP-2 and BMP-6 ligands, and phosphorylated isoforms of Smad-1/-5/-8, which mediate BMP family member signaling. In opposition to the inhibitory effects of TGFß1 or activin-A, autocrine BMP signaling was supportive to NK cell function. Mechanistic investigations in cytokine and TLR-L-activated NK cells revealed that BMP signaling optimized IFNγ and global cytokine and chemokine production, phenotypic activation and proliferation, and autologous dendritic cell activation and target cytotoxicity. Collectively, our findings identify a novel auto-activatory pathway that is essential for optimal NK cell effector function, one that might be therapeutically manipulated to help eradicate tumors. Cancer Res; 74(18); 5019-31. ©2014 AACR.


Bone Morphogenetic Proteins/immunology , Killer Cells, Natural/immunology , Autocrine Communication , Bone Morphogenetic Protein Receptors/immunology , Bone Morphogenetic Protein Receptors/metabolism , Bone Morphogenetic Proteins/biosynthesis , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Cell Differentiation/immunology , Humans , Killer Cells, Natural/metabolism , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Signal Transduction
16.
Vaccine ; 32(30): 3861-8, 2014 Jun 24.
Article En | MEDLINE | ID: mdl-24928062

In Australia, during the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in post-marketing adverse event reports of febrile seizures (FS) in children under 5 years of age shortly after vaccination with the CSL trivalent influenza vaccine (CSL 2010 SH TIV) compared to previous CSL TIVs and other licensed 2010 SH TIVs. The present study describes the outcomes of a series of in vitro experiments directed at elucidating the root cause. The scientific investigations found that a subset of paediatric donors displayed elevated cytokine/chemokine responses to the CSL 2010 SH TIV but not to previous CSL TIVs nor other 2010 SH TIVs. The induction of elevated cytokines/chemokines in paediatric whole blood correlated with elevated NF-κB activation in a HEK293 cell reporter assay. The data indicate that the introduction of the B/Brisbane/60/2008 strain within the CSL manufacturing process (such as occurred in the preceding 2009/10 NH season) appears to have raised the pyrogenic potential of the CSL 2009/10 NH TIV but that this was insufficient to elicit FS in children <5 years. The 2010 SH season coincided with the first introduction of the H1N1 A/California/07/2009 in combination with the B/Brisbane/60/2008 strain. Our data demonstrates that the introduction of the H1N1 A/California/07/2009 (and to a much lesser degree, H3N2 A/Wisconsin/15/2009) in combination with B/Brisbane/60/2008 (as expressed through the CSL method of manufacture) combined and likely compounded the bioactivity of the CSL 2010 SH TIV. This was associated with stronger immune responses, which in a proportion of children <5 years were associated with FS. The assays and systems developed during these investigations should greatly assist in determining the bioactivity of new influenza strains, and thus aid with the manufacture of CSL TIVs indicated for use in the paediatric population.


Chemokines/immunology , Cytokines/immunology , Influenza Vaccines/adverse effects , Influenza, Human/prevention & control , Seizures, Febrile/chemically induced , Australia/epidemiology , Child , Child, Preschool , HEK293 Cells , Humans , Infant , Influenza A Virus, H1N1 Subtype , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza Vaccines/immunology , NF-kappa B/metabolism , Product Surveillance, Postmarketing
17.
Vaccine ; 32(30): 3869-76, 2014 Jun 24.
Article En | MEDLINE | ID: mdl-24681272

In Australia, during the 2010 Southern Hemisphere (SH) influenza season, there was an unexpected increase in post-marketing adverse event reports of febrile seizures (FS) in children under 5 years of age shortly after vaccination with the CSL 2010 SH trivalent influenza vaccine (CSL 2010 SH TIV) compared to previous CSL TIVs and other licensed 2010 SH TIVs. In an accompanying study, we described the contribution to these adverse events of the 2010 SH influenza strains as expressed in the CSL 2010 SH TIV using in vitro cytokine/chemokine secretion from whole blood cells and induction of NF-κB activation in HEK293 reporter cells. The aim of the present study was to identify the root cause components that elicited the elevated cytokine/chemokine and NF-κB signature. Our studies demonstrated that the pyrogenic signal was associated with a heat-labile, viral-derived component(s) in the CSL 2010 SH TIV. Further, it was found that viral lipid-mediated delivery of short, fragmented viral RNA was the key trigger for the increased cytokine/chemokine secretion and NF-κB activation. It is likely that the FS reported in children <5 years were due to a combination of the new influenza strains included in the 2010 SH TIV and the CSL standard method of manufacture preserving strain-specific viral components of the new influenza strains (particularly B/Brisbane/60/2008 and to a lesser extent H1N1 A/California/07/2009). These combined to heighten immune activation of innate immune cells, which in a small proportion of children <5 years of age is associated with the occurrence of FS. The data also demonstrates that CSL TIVs formulated with increased levels of splitting agent (TDOC) for the B/Brisbane/60/2008 strain can attenuate the pro-inflammatory signals in vitro, identifying a potential path forward for generating a CSL TIV indicated for use in children <5 years.


Influenza Vaccines/adverse effects , Lipids/administration & dosage , RNA, Viral/administration & dosage , Seizures, Febrile/chemically induced , Australia/epidemiology , Chemokines/immunology , Child, Preschool , Cytokines/immunology , Drug Carriers/administration & dosage , HEK293 Cells , Humans , Influenza A Virus, H1N1 Subtype , Influenza B virus , Influenza, Human/prevention & control , NF-kappa B/metabolism , Product Surveillance, Postmarketing
18.
J Immunol ; 192(11): 5031-8, 2014 Jun 01.
Article En | MEDLINE | ID: mdl-24760152

High-dose i.v. Ig (IVIG) is used to treat various autoimmune and inflammatory diseases; however, the mechanism of action remains unclear. Based on the K/BxN serum transfer arthritis model in mice, IVIG suppression of inflammation has been attributed to a mechanism involving basophils and the binding of highly sialylated IgG Fc to DC-SIGN-expressing myeloid cells. The requirement for sialylation was examined in the collagen Ab-induced arthritis (CAbIA) and K/BxN serum transfer arthritis models in mice. High-dose IVIG (1-2 g/kg body weight) suppressed inflammatory arthritis when given prophylactically. The same doses were also effective in the CAbIA model when given subsequent to disease induction. In this therapeutic CAbIA model, the anti-inflammatory effect of IVIG was dependent on IgG Fc but not F(ab')2 fragments. Removal of sialic acid residues by neuraminidase had no impact on the anti-inflammatory activity of IVIG or Fc fragments. Treatment of mice with basophil-depleting mAbs did not abrogate the suppression of either CAbIA or K/BxN arthritis by IVIG. Our data confirm the therapeutic benefit of IVIG and IgG Fc in Ab-induced arthritis but fail to support the significance of sialylation and basophil involvement in the mechanism of action of IVIG therapy.


Arthritis/immunology , Arthritis/prevention & control , Basophils/immunology , Immunoglobulin Fc Fragments/immunology , Immunoglobulins, Intravenous/pharmacology , Immunologic Factors/pharmacology , N-Acetylneuraminic Acid/immunology , Animals , Arthritis/pathology , Basophils/pathology , Disease Models, Animal , Immunoglobulins, Intravenous/immunology , Immunologic Factors/immunology , Male , Mice , Mice, Inbred NOD
19.
J Immunol ; 192(7): 3259-68, 2014 Apr 01.
Article En | MEDLINE | ID: mdl-24610009

Adjuvants are an essential component of modern vaccines and used for their ability to elicit immunity to coadministered Ags. Many adjuvants in clinical development are particulates, but how they drive innate and adaptive immune responses remains poorly understood. Studies have shown that a number of vaccine adjuvants activate inflammasome pathways in isolated APCs. However, the contribution of inflammasome activation to vaccine-mediated immunity in vivo remains controversial. In this study, we evaluated immune cell responses to the ISCOMATRIX adjuvant (IMX) in mice. Like other particulate vaccine adjuvants, IMX potently activated the NALP-3-ASC-Caspase-1 inflammasome in APCs, leading to IL-1ß and IL-18 production. The IL-18R pathway, but not IL-1R, was required for early innate and subsequent cellular immune responses to a model IMX vaccine. APCs directly exposed to IMX underwent an endosome-mediated cell-death response, which we propose initiates inflammatory events locally at the injection site. Importantly, both inflammasome-related and -unrelated pathways contributed to IL-18 dependence in vivo following IMX administration. TNF-α provided a physiological priming signal for inflammasome-dependent IL-18 production by APCs, which correlated with reduced vaccine-mediated immune cell responses in TNF-α- or TNFR-deficient mice. Taken together, our findings highlight an important disconnect between the mechanisms of vaccine adjuvant action in vitro versus in vivo.


Cholesterol/immunology , Immunity/immunology , Inflammasomes/immunology , Interleukin-18/immunology , Phospholipids/immunology , Saponins/immunology , Adenosine Triphosphate/immunology , Adenosine Triphosphate/metabolism , Adjuvants, Immunologic/pharmacology , Animals , Antigen-Presenting Cells/drug effects , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Blotting, Western , Cell Survival/drug effects , Cell Survival/immunology , Cholesterol/pharmacology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Drug Combinations , Humans , Immunity/drug effects , Inflammasomes/drug effects , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lysosomes/drug effects , Lysosomes/immunology , Lysosomes/metabolism , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Phospholipids/pharmacology , Receptors, Tumor Necrosis Factor/deficiency , Receptors, Tumor Necrosis Factor/genetics , Receptors, Tumor Necrosis Factor/immunology , Saponins/pharmacology , Signal Transduction/drug effects , Signal Transduction/immunology , Tumor Necrosis Factor-alpha/deficiency , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
...