Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Nat Microbiol ; 7(12): 1951-1955, 2022 12.
Article En | MEDLINE | ID: mdl-36344621

The ongoing monkeypox virus (MPXV) outbreak is the largest ever recorded outside of Africa. We isolated and sequenced a virus from the first clinical MPXV case diagnosed in France (May 2022). We report that tecovirimat (ST-246), a US Food and Drug Administration approved drug, is efficacious against this isolate in vitro at nanomolar concentrations, whereas cidofovir is only effective at micromolar concentrations. Our results support the use of tecovirimat in ongoing human clinical trials.


Monkeypox virus , Mpox (monkeypox) , United States , Humans , Mpox (monkeypox)/drug therapy , Isoindoles/pharmacology , Isoindoles/therapeutic use , Benzamides/pharmacology , Benzamides/therapeutic use
2.
Cancers (Basel) ; 13(21)2021 Nov 05.
Article En | MEDLINE | ID: mdl-34771724

Elucidating mechanisms involved in tumor-induced immunosuppression is of great interest since it could help to improve cancer immunotherapy efficacy. Here we show that Hepatocyte Growth Factor (HGF), a pro-tumoral and proangiogenic factor, and its receptor c-Met are involved in regulatory T cells (Treg) accumulation in the peripheral blood of gastric cancer (GC) patients. We observed that c-Met is expressed on circulating monocytes from GC patients. The elevated expression on monocytes is associated with clinical parameters linked to an aggressive disease phenotype and correlates with a worse prognosis. Monocyte-derived dendritic cells from GC patients differentiated in the presence of HGF adopt a regulatory phenotype with a lower expression of co-stimulatory molecules, impaired maturation capacities, and an increased ability to produce interleukin-10 and to induce Treg differentiation in vitro. In the MEGA-ACCORD20-PRODIGE17 trial, GC patients received an anti-HGF antibody treatment (rilotumumab), which had been described to have an anti-angiogenic activity by decreasing proliferation of endothelial cells and tube formation. Rilotumumab decreased circulating Treg in GC patients. Thus, we identified that HGF indirectly triggers Treg accumulation via c-Met-expressing monocytes in the peripheral blood of GC patients. Our study provides arguments for potential alternative use of HGF/c-Met targeted therapies based on their immunomodulatory properties which could lead to the development of new therapeutic associations in cancer patients, for example with immune checkpoint inhibitors.

3.
Cancers (Basel) ; 13(16)2021 Aug 12.
Article En | MEDLINE | ID: mdl-34439212

Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-ß), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-ß signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-ß activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-ß activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

4.
Nat Commun ; 11(1): 437, 2020 01 23.
Article En | MEDLINE | ID: mdl-31974367

Immune checkpoint inhibitors (ICIs) have dramatically modified the prognosis of several advanced cancers, however many patients still do not respond to treatment. Optimal results might be obtained by targeting cancer cell metabolism to modulate the immunosuppressive tumor microenvironment. Here, we identify sphingosine kinase-1 (SK1) as a key regulator of anti-tumor immunity. Increased expression of SK1 in tumor cells is significantly associated with shorter survival in metastatic melanoma patients treated with anti-PD-1. Targeting SK1 markedly enhances the responses to ICI in murine models of melanoma, breast and colon cancer. Mechanistically, SK1 silencing decreases the expression of various immunosuppressive factors in the tumor microenvironment to limit regulatory T cell (Treg) infiltration. Accordingly, a SK1-dependent immunosuppressive signature is also observed in human melanoma biopsies. Altogether, this study identifies SK1 as a checkpoint lipid kinase that could be targeted to enhance immunotherapy.


Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Phosphotransferases (Alcohol Group Acceptor)/genetics , Skin Neoplasms/drug therapy , Aged , Animals , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/pathology , Female , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Male , Melanoma/immunology , Melanoma/mortality , Melanoma/pathology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Mice, Inbred BALB C , Middle Aged , Molecular Targeted Therapy , Nivolumab/therapeutic use , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Skin Neoplasms/immunology , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Survival Rate , T-Lymphocytes, Regulatory/pathology , Tumor Escape/drug effects , Tumor Escape/physiology
5.
Gastric Cancer ; 23(1): 73-81, 2020 01.
Article En | MEDLINE | ID: mdl-31267360

BACKGROUND: The correlation between immune cells and the Lauren classification subtypes and their prognostic impact in advanced gastric cancer (AGC) are unknown. METHODS: Circulating natural killer (NK) cells, CD4+ and CD8+ T cells, regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) were quantified in peripheral blood mononuclear cells (PBMCs) from 67 patients with untreated AGC enrolled in the PRODIGE 17-ACCORD 20 trial. CD56+ cells (NK), CD8+, and FoxP3+ (Treg) tumor-infiltrating lymphocytes (TILs) were assessed in tumor samples. RESULTS: Circulating NK and Treg proportions were significantly lower in patients with diffuse/mixed-type AGC (n = 27) than those with intestinal type (n = 40; median 6.3% vs 11.5%; p = 0.02 and median 3.3% vs 5.2%; p = 0.03, respectively). Proportions of circulating MDSC, CD4+ and CD8+ T cells were not associated with one pathological type. Among tumor-infiltrating cells, CD8+ T cells, but not NK or FoxP3+ cells, were significantly lower in diffuse/mixed-type AGC (median 21 vs 59 cells/field; p = 0.009). Patients with high circulating NK cell counts (> 17%) had a better overall survival than those with < 17% (HR 0.40; 95% CI [0.15-1.06]; p = 0.04). Patients with high CD8+ TIL counts (> 31 cells/field) had significantly longer overall survival (HR 0.44; 95% CI [0.21-0.92]; p = 0.02). The prognostic value of CD8+ TILs was maintained after adjustment for confounding factors, including the Lauren classification (HR = 0.42; 95% CI [0.18-0.96]; p = 0.039). CONCLUSION: Diffuse/mixed-type AGC has lower rates of CD8+ TILs and circulating NK cells and Tregs than the intestinal type. This "cold tumor" phenotype may be associated with a worse outcome.


Killer Cells, Natural/immunology , Stomach Neoplasms/immunology , Stomach Neoplasms/pathology , Adult , Aged , Aged, 80 and over , Female , Humans , Kaplan-Meier Estimate , Leukocytes, Mononuclear/pathology , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Prognosis , Stomach Neoplasms/classification , Stomach Neoplasms/mortality
6.
Nat Commun ; 8(1): 2256, 2017 12 22.
Article En | MEDLINE | ID: mdl-29273790

Antibodies against programmed cell death-1 (PD-1) have considerably changed the treatment for melanoma. However, many patients do not display therapeutic response or eventually relapse. Moreover, patients treated with anti-PD-1 develop immune-related adverse events that can be cured with anti-tumor necrosis factor α (TNF) antibodies. Whether anti-TNF antibodies affect the anti-cancer immune response remains unknown. Our recent work has highlighted that TNFR1-dependent TNF signalling impairs the accumulation of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in mouse melanoma. Herein, our results indicate that TNF or TNFR1 blockade synergizes with anti-PD-1 on anti-cancer immune responses towards solid cancers. Mechanistically, TNF blockade prevents anti-PD-1-induced TIL cell death as well as PD-L1 and TIM-3 expression. TNF expression positively correlates with expression of PD-L1 and TIM-3 in human melanoma specimens. This study provides a strong rationale to develop a combination therapy based on the use of anti-PD-1 and anti-TNF in cancer patients.


Antineoplastic Agents, Immunological/pharmacology , Drug Resistance, Neoplasm/drug effects , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Receptors, Tumor Necrosis Factor, Type I/antagonists & inhibitors , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/drug effects , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/drug effects , Cell Line, Tumor , Drug Synergism , Female , Hepatitis A Virus Cellular Receptor 2/drug effects , Hepatitis A Virus Cellular Receptor 2/metabolism , Humans , Ipilimumab/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Mammary Neoplasms, Animal/genetics , Mammary Neoplasms, Animal/metabolism , Melanoma/genetics , Melanoma/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/metabolism , Mice , Nivolumab , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Tumor Necrosis Factor-alpha/metabolism
7.
Nat Commun ; 8: 15221, 2017 05 24.
Article En | MEDLINE | ID: mdl-28537262

Tissue-resident memory T cells (Trm) represent a new subset of long-lived memory T cells that remain in tissue and do not recirculate. Although they are considered as early immune effectors in infectious diseases, their role in cancer immunosurveillance remains unknown. In a preclinical model of head and neck cancer, we show that intranasal vaccination with a mucosal vector, the B subunit of Shiga toxin, induces local Trm and inhibits tumour growth. As Trm do not recirculate, we demonstrate their crucial role in the efficacy of cancer vaccine with parabiosis experiments. Blockade of TFGß decreases the induction of Trm after mucosal vaccine immunization, resulting in the lower efficacy of cancer vaccine. In order to extrapolate this role of Trm in humans, we show that the number of Trm correlates with a better overall survival in lung cancer in multivariate analysis. The induction of Trm may represent a new surrogate biomarker for the efficacy of cancer vaccine. This study also argues for the development of vaccine strategies designed to elicit them.


CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use , Carcinoma, Non-Small-Cell Lung/therapy , Immunologic Memory , Lung Neoplasms/therapy , Administration, Inhalation , Animals , Biomarkers, Tumor/metabolism , Cancer Vaccines/administration & dosage , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Female , Gene Expression Profiling , Genetic Vectors , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/therapy , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Mice, Inbred C57BL , Mucous Membrane/immunology , Prognosis , Retrospective Studies , Treatment Outcome
8.
Eur J Cancer ; 79: 15-22, 2017 07.
Article En | MEDLINE | ID: mdl-28456090

BACKGROUND: The identification of dynamic biomarkers in advanced gastric and oesogastric junction adenocarcinoma (GOA) could help to tailor strategies for each patient. Enumeration of circulating tumour cells (CTCs) is approved by the US Food and Drug Administration in breast, colon and prostate cancer but is not in advanced GOA. Our study aims to establish the optimal threshold and the clinical significance of CTC count in advanced GOA before and during treatment. METHODS: One hundred six patients with untreated advanced GOA were included in the ancillary study of the PRODIGE 17-ACCORD 20 trial. CTCs were detected in the peripheral blood using the CellSearch system on day 0 (D0) and day 28 (D28). The prognostic value of CTCs at D0 and D28 was analysed by testing several thresholds. RESULTS: At baseline, median CTC count was 1 (range, 0-415). While CTCs ≥1, 2 or 3 at D0 were all significantly associated with worse overall survival (OS) and progression-free survival (PFS), CTCs ≥2 were the optimal threshold, on D0 or D28. CTCs ≥2 at D28 were also predictive of disease control. Taking into account both D0 and D28 CTC count defined 3 groups (low/low, high/low and low-high/high) with significantly different PFS (p = 0.0002) and OS (p = 0.003). CONCLUSION: Quantification of CTCs at baseline and during treatment may be a useful prognostic tool in advanced GOA, as it is associated with worse PFS and OS. A threshold ≥2 CTCs seems to have the best discriminant value. Change in CTC count between baseline and D28 could help to tailor treatment to each individual patient.


Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/pathology , Esophagogastric Junction/pathology , Neoplastic Cells, Circulating/pathology , Stomach Neoplasms/pathology , Antibodies, Monoclonal, Humanized/administration & dosage , Cell Count , Disease Progression , Disease-Free Survival , Esophageal Neoplasms/drug therapy , Female , Fluorouracil/administration & dosage , Humans , Kaplan-Meier Estimate , Leucovorin/administration & dosage , Male , Organoplatinum Compounds/administration & dosage , Oxaliplatin , Prognosis , Stomach Neoplasms/drug therapy , Treatment Outcome
9.
J Immunol ; 197(1): 168-78, 2016 07 01.
Article En | MEDLINE | ID: mdl-27217584

Tumors with the help of the surrounding environment facilitate the immune suppression in patients, and immunotherapy can counteract this inhibition. Among immunotherapeutic strategies, the immunostimulatory cytokine IL-15 could represent a serious candidate for the reactivation of antitumor immunity. However, exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Rα frequently downregulated in cancer patients. In this work, we studied the antitumor activity of the IL-15 superagonist receptor-linker-IL-15 (RLI), designed to bypass the need of endogenous IL-15Rα. RLI consists of human IL-15 covalently linked to the human IL-15Rα sushi(+) domain. In a mouse model of colorectal carcinoma, RLI as a stand-alone treatment could limit tumor outgrowth only when initiated at an early time of tumor development. At a later time, RLI was not effective, coinciding with the strong accumulation of terminally exhausted programmed cell death-1 (PD-1)(high) T cell Ig mucin-3(+) CD8(+) T cells, suggesting that RLI was not able to reactivate terminally exhausted CD8(+) T cells. Combination with PD-1 blocking Ab showed synergistic activity with RLI, but not with IL-15. RLI could induce a greater accumulation of memory CD8(+) T cells and a stronger effector function in comparison with IL-15. Ex vivo stimulation of tumor-infiltrated lymphocytes from 16 patients with renal cell carcinoma demonstrated 56% of a strong tumor-infiltrated lymphocyte reactivation with the combination anti-PD-1/RLI compared with 43 and 6% with RLI or anti-PD-1, respectively. Altogether, this work provides evidence that the sushi-IL-15Rα/IL-15 fusion protein RLI enhances antitumor activity of anti-PD-1 treatment and is a promising approach to stimulate host immunity.


Adenocarcinoma/therapy , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , CD8-Positive T-Lymphocytes/drug effects , Carcinoma, Renal Cell/therapy , Colonic Neoplasms/therapy , Immunotherapy/methods , Interleukin-15/metabolism , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Recombinant Fusion Proteins/therapeutic use , Adenocarcinoma/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Renal Cell/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Colonic Neoplasms/immunology , Cytotoxicity, Immunologic/drug effects , Drug Synergism , Drug Therapy, Combination , Humans , Immunologic Memory/drug effects , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , STAT5 Transcription Factor/metabolism , Signal Transduction , Tumor Burden/drug effects
10.
J Exp Med ; 212(2): 139-48, 2015 Feb 09.
Article En | MEDLINE | ID: mdl-25601652

Immune escape is a prerequisite for tumor development. To avoid the immune system, tumors develop different mechanisms, including T cell exhaustion, which is characterized by expression of immune inhibitory receptors, such as PD-1, CTLA-4, Tim-3, and a progressive loss of function. The recent development of therapies targeting PD-1 and CTLA-4 have raised great interest since they induced long-lasting objective responses in patients suffering from advanced metastatic tumors. However, the regulation of PD-1 expression, and thereby of exhaustion, is unclear. VEGF-A, a proangiogenic molecule produced by the tumors, plays a key role in the development of an immunosuppressive microenvironment. We report in the present work that VEGF-A produced in the tumor microenvironment enhances expression of PD-1 and other inhibitory checkpoints involved in CD8(+) T cell exhaustion, which could be reverted by anti-angiogenic agents targeting VEGF-A-VEGFR. In view of these results, association of anti-angiogenic molecules with immunomodulators of inhibitory checkpoints may be of particular interest in VEGF-A-producing tumors.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Vascular Endothelial Growth Factor/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , CD8-Positive T-Lymphocytes/drug effects , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Disease Models, Animal , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mice , Neoplasms/genetics , Neoplasms/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Protein Binding , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/pharmacology
11.
World J Gastroenterol ; 20(14): 3738-50, 2014 Apr 14.
Article En | MEDLINE | ID: mdl-24833840

Strong evidence supports the concept of immunosurveillance and immunoediting in colorectal cancer. In particular, the density of T CD8⁺ and CD45⁺ lymphocyte infiltration was recently shown to have a better prognostic value than the classic tumor node metastasis classification factor. Other immune subsets, as macrophages, natural killer cells or unconventionnal lymphocytes, seem to play an important role. Induction of regulatory T cells (Tregs) or immunosuppressive molecules such as PD-1 or CTLA-4 and downregulation of antigen-presenting molecules are major escape mechanisms to antitumor immune response. The development of these mechanisms is a major obstacle to the establishment of an effective immune response, but also to the use of immunotherapy. Although immunotherapy is not yet routinely used in colorectal cancer, we now know that most treatments used (chemotherapy and biotherapy) have immunomodulatory effects, such as induction of immunogenic cell death by chemotherapy, inhibition of immunosuppression by antiangiogenic agents, and antibody-dependent cytotoxicity induced by cetuximab. Finally, many immunotherapy strategies are being developed and tested in phase I to III clinical trials. The most promising strategies are boosting the immune system with cytokines, inhibition of immunoregulatory checkpoints, vaccination with vectorized antigens, and adoptive cell therapy. Comprehension of antitumor immune response and combination of the different approaches of immunotherapy may allow the use of effective immunotherapy for treatment of colorectal cancer in the near future.


CD8-Positive T-Lymphocytes/cytology , Colorectal Neoplasms/immunology , Leukocyte Common Antigens/metabolism , Antineoplastic Agents/therapeutic use , CTLA-4 Antigen/metabolism , HLA Antigens/metabolism , Humans , Immunity, Innate , Immunotherapy/methods , Killer Cells, Natural/cytology , Lymphocytes/cytology , Macrophages/cytology , Microsatellite Repeats , Prognosis , Programmed Cell Death 1 Receptor/metabolism , Vaccination
12.
Front Oncol ; 4: 70, 2014.
Article En | MEDLINE | ID: mdl-24765614

The progressive conversion of normal cells into cancer cells is characterized by the acquisition of eight hallmarks. Among these criteria, the capability of the cancer cell to avoid the immune destruction has been noted. Thus, tumors develop mechanisms to become invisible to the immune system, such as the induction of immunosuppressive cells, which are able to inhibit the development of an efficient immune response. Molecules produced in the tumor microenvironment are involved in the occurrence of an immunosuppressive microenvironment. Recently, it has been shown that vascular endothelial growth factor A (VEGF-A) exhibits immunosuppressive properties in addition to its pro-angiogenic activities. VEGF-A can induce the accumulation of immature dendritic cells, myeloid-derived suppressor cells, regulatory T cells, and inhibit the migration of T lymphocytes to the tumor. Other pro-angiogenic factors such as placental growth factor (PlGF) could also participate in tumor-induced immunosuppression, but only few works have been performed on this point. Here, we review the impact of pro-angiogenic factors (especially VEGF-A) on immune cells. Anti-angiogenic molecules, which target VEGF-A/VEGFR axis, have been developed in the last decades and are commonly used to treat cancer patients. These drugs have anti-angiogenic properties but can also counteract the tumor-induced immunosuppression. Based on these immunomodulatory properties, anti-angiogenic molecules could be efficiently associated with immunotherapeutic strategies in preclinical models. These combinations are currently under investigation in cancer patients.

13.
Sci Transl Med ; 5(172): 172ra20, 2013 Feb 13.
Article En | MEDLINE | ID: mdl-23408053

Although many human cancers are located in mucosal sites, most cancer vaccines are tested against subcutaneous tumors in preclinical models. We therefore wondered whether mucosa-specific homing instructions to the immune system might influence mucosal tumor outgrowth. We showed that the growth of orthotopic head and neck or lung cancers was inhibited when a cancer vaccine was delivered by the intranasal mucosal route but not the intramuscular route. This antitumor effect was dependent on CD8⁺ T cells. Indeed, only intranasal vaccination elicited mucosal-specific CD8⁺ T cells expressing the mucosal integrin CD49a. Blockade of CD49a decreased intratumoral CD8⁺ T cell infiltration and the efficacy of cancer vaccine on mucosal tumor. We then showed that after intranasal vaccination, dendritic cells from lung parenchyma, but not those from spleen, induced the expression of CD49a on cocultured specific CD8⁺ T cells. Tumor-infiltrating lymphocytes from human mucosal lung cancer also expressed CD49a, which supports the relevance and possible extrapolation of these results in humans. We thus identified a link between the route of vaccination and the induction of a mucosal homing program on induced CD8⁺ T cells that controlled their trafficking. Immunization route directly affected the efficacy of the cancer vaccine to control mucosal tumors.


CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/administration & dosage , Chemotaxis, Leukocyte , Head and Neck Neoplasms/therapy , Immunity, Mucosal , Lung Neoplasms/therapy , Nasal Mucosa/immunology , Papillomavirus Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Administration, Intranasal , Animals , Antigens, CD/metabolism , Cancer Vaccines/immunology , Cell Proliferation , Cells, Cultured , Dendritic Cells/immunology , Female , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/pathology , Humans , Injections, Intramuscular , Integrin alpha Chains/metabolism , Integrin alpha1/metabolism , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lymph Nodes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Papillomavirus Vaccines/immunology , Shiga Toxins/administration & dosage , Spleen/immunology , Tumor Burden
14.
Cancer Res ; 73(2): 539-49, 2013 Jan 15.
Article En | MEDLINE | ID: mdl-23108136

Multitarget antiangiogenic tyrosine kinase inhibitors (TKI) have been shown to reduce regulatory T cells (Treg) in tumor-bearing animals and patients with metastatic renal carcinomas. However, a direct role of the VEGF-A/VEGFR pathway inhibition in this phenomenon is a matter of debate and molecular mechanisms leading to Treg modulation in this setting have not been explored to date. Treg proportion, number, and proliferation were analyzed by flow cytometry in peripheral blood of patients with metastatic colorectal cancer (mCRC) treated with bevacizumab, a monoclonal antibody targeting specifically VEGF-A, and in colon cancer-bearing mice (CT26) treated with drugs targeting the VEGF/VEGFR axis. The direct impact of VEGF-A on Treg induction was assessed together with specific blockade of different isoforms of VEGFRs that may be involved. In CT26-bearing mice, anti-VEGF antibody and sunitinib treatments reduced Treg but masitinib, a TKI not targeting VEGFR, did not. Targeting VEGF-A/VEGFR axis seems sufficient to affect Treg percentages, without any changes in their function. Similarly, bevacizumab inhibited Treg accumulation in peripheral blood of patients with mCRCs. In vitro, Treg expressing VEGFR from tumor-bearing mice directly proliferated in response to VEGF-A. Anti-VEGF-A treatment decreased Treg proliferation in mice as well as in patients with mCRCs. VEGFR-2- but not VEGFR-1-specific blockade led to the same results. We identified a novel mechanism of tumor escape by which VEGF-A directly triggers Treg proliferation. This proliferation is inhibited by VEGF-A/VEGFR-2 blockade. Anti-VEGF-A therapies also have immunologic effects that may be used with a therapeutic goal in the future.


Colorectal Neoplasms/immunology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Tumor Escape , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Angiogenesis Inhibitors/therapeutic use , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Bevacizumab , Cell Count , Cell Line, Tumor , Cell Proliferation , Colonic Neoplasms/drug therapy , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Female , Humans , Indoles/pharmacology , Mice , Mice, Inbred BALB C , Pyrroles/pharmacology , Sunitinib , T-Lymphocytes, Regulatory/metabolism
15.
Comp Immunol Microbiol Infect Dis ; 35(6): 583-9, 2012 Dec.
Article En | MEDLINE | ID: mdl-22898354

We report the molecular detection of Borrelia afzelii (11%) and Bartonella spp. (56%) in 447 bank voles trapped in a suburban forest in France. Adult voles were infected by significantly more Borrelia afzelii than juveniles (p<0.001), whereas no significant difference was detected in the prevalence of Bartonella spp. between young and adult individuals (p=0.914). Six percent of the animals were co-infected by both bacteria. Analysis of the bank vole carrier status for either pathogen indicated that co-infections occur randomly (p=0.94, CI(95)=[0.53; 1.47]). Sequence analysis revealed that bank voles were infected by a single genotype of Borrelia afzelii and by 32 different Bartonella spp. genotypes, related to three known species specific to rodents (B. taylorii, B. grahamii and B. doshiae) and also two as yet unidentified Bartonella species. Our findings confirm that rodents harbor high levels of potential human pathogens; therefore, widespread surveillance should be undertaken in areas where humans may encounter rodents.


Arvicolinae/microbiology , Bartonella Infections/veterinary , Bartonella/genetics , Lyme Disease/epidemiology , Lyme Disease/veterinary , Rodent Diseases/epidemiology , Age Factors , Animals , Bacterial Typing Techniques , Bartonella/isolation & purification , Bartonella Infections/epidemiology , Bartonella Infections/microbiology , Borrelia burgdorferi Group/genetics , Borrelia burgdorferi Group/isolation & purification , Coinfection , Disease Reservoirs/microbiology , Epidemiological Monitoring , France/epidemiology , Humans , Lyme Disease/microbiology , Phylogeny , Prevalence , Rodent Diseases/microbiology , Trees
16.
Oncoimmunology ; 1(3): 326-333, 2012 May 01.
Article En | MEDLINE | ID: mdl-22737608

CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg) have emerged as a dominant T cell population inhibiting anti-tumor effector T cells. Initial strategies used for Treg-depletion (cyclophosphamide, anti-CD25 mAb…) also targeted activated T cells, as they share many phenotypic markers. Current, ameliorated approaches to inhibit Treg aim to either block their function or their migration to lymph nodes and the tumor microenvironment. Various drugs originally developed for other therapeutic indications (anti-angiogenic molecules, tyrosine kinase inhibitors,etc) have recently been discovered to inhibit Treg. These approaches are expected to be rapidly translated to clinical applications for therapeutic use in combination with immunomodulators.

17.
Clin Dev Immunol ; 2012: 492920, 2012.
Article En | MEDLINE | ID: mdl-23320019

In the last decades a new class of therapeutic drugs have been developed that block tumor angiogenesis. These antiangiogenic molecules, which target VEGF or VEGFR, PDGFR, and c-kit, can act not only on endothelial cells but also on immune cells. Some antiangiogenic molecules inhibit the development of immunosuppressive mechanisms developed by the tumors to escape the immune system (such as regulatory T cells, myeloid-derived suppressor cells, and immunosuppressive cytokines). These immunomodulatory effects must be characterized in detail to enable a better prescription of these treatments. In this paper we will focus on the impact of anti-angiogenic drugs on immunosuppression and their potential combination with immunotherapeutic strategies. Interestingly, immune parameters or their modulation during treatment could serve as potential biomarkers of response or resistance to anti-angiogenic therapies.


Angiogenesis Inhibitors/pharmacology , Immunologic Factors/pharmacology , Neoplasms/blood supply , Neoplasms/drug therapy , Angiogenesis Inhibitors/therapeutic use , Animals , Humans , Immunity/drug effects , Immunity/immunology , Immunologic Factors/therapeutic use , Neoplasms/immunology , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/immunology
18.
Blood ; 118(18): 4853-62, 2011 Nov 03.
Article En | MEDLINE | ID: mdl-21908423

Regulatory T cells (Tregs) may impede cancer vaccine efficacy in hematologic malignancies and cancer. CCR4 antagonists, an emergent class of Treg inhibitor, have been shown to block recruitment of Tregs mediated by CCL22 and CCL17. Our aim was to demonstrate the ability of a CCR4 antagonist (a small chemical molecule identified in silico) when combined with vaccines to break peripheral tolerance controlled by Tregs, a prerequisite for the induction of CD8(+) T cells against self Ags. Immunization of transgenic or normal mice expressing tumor-associated self Ags (Her2/neu, OVA, gp100) with a CCR4 antagonist combined with various vaccines led to the induction of effector CD8(+) T cells and partial inhibition of tumor growth expressing self Ags in both prophylactic and therapeutic settings. The CCR4 antagonist was more efficient than cyclophosphamide to elicit anti-self CD8(+) T cells. We also showed that the population of Tregs expressing CCR4 corresponded to memory (CD44(high)) and activated (ICOS(+)) Tregs, an important population to be targeted to modulate Treg activity. CCR4 antagonist represents a competitive class of Treg inhibitor able to induce functional anti-self CD8(+) T cells and tumor growth inhibition when combined with vaccines. High expression of CCR4 on human Tregs also supports the clinical development of this strategy.


Autoantigens/immunology , CD8-Positive T-Lymphocytes/drug effects , Cancer Vaccines/administration & dosage , Neoplasms/therapy , Receptors, CCR4/antagonists & inhibitors , Tumor Escape/drug effects , Animals , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Autoantigens/drug effects , CD8-Positive T-Lymphocytes/immunology , Combined Modality Therapy , Disease Models, Animal , Female , Humans , Immunologic Factors/administration & dosage , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/pathology , T-Cell Antigen Receptor Specificity/drug effects , T-Cell Antigen Receptor Specificity/immunology , Tumor Escape/immunology
...