Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Article En | MEDLINE | ID: mdl-38623703

Plastic pollution in aquatic ecosystems has become a significant problem especially microplastics which can encapsulate into the skeletons of organisms that produce calcium carbonates, such as foraminifera, molluscs and corals. The encapsulation of microplastics into precipitated aragonite, which in nature builds the coral skeleton, has not yet been studied. It is also not known how the dissolved organic matter, to which microplastics are constantly exposed in aquatic ecosystems, affects the encapsulation of microplastics into aragonite and how such microplastics affect the mechanical properties of aragonite. We performed aragonite precipitation experiments in artificial seawater in the presence of polystyrene (PS) and polyethylene (PE) microspheres, untreated and treated with humic acid (HA). The results showed that the efficiency of encapsulating PE and PE-HA microspheres in aragonite was higher than that for PS and PS-HA microspheres. The mechanical properties of resulting aragonite changed after the encapsulation of microplastic particles. A decrease in the hardness and indentation modulus of the aragonite samples was observed, and the most substantial effect occurred in the case of PE-HA microspheres encapsulation. These findings raise concerns about possible changes in the mechanical properties of the exoskeleton and endoskeleton of calcifying marine organisms such as corals and molluscs due to the incorporation of pristine microplastics and microplastics exposed to dissolved organic matter.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38668223

Magnetite nanoparticles (NPs) possess properties that make them suitable for a wide range of applications. In recent years, interest in the synthesis of magnetite NPs and their surface functionalization has increased significantly, especially regarding their application in biomedicine such as for controlled and targeted drug delivery. There are several conventional methods for preparing magnetite NPs, all of which mostly utilize Fe(iii) and Fe(ii) salt precursors. In this study, we present a microwave hydrothermal synthesis for the precipitation of magnetite NPs at temperatures of 200 °C for 20 min and 260 °C for 5 min, with only iron(iii) as a precursor utilizing chamomile flower extract as a stabilizing, capping, and reducing agent. Products were characterized using FTIR, PXRD, SEM, and magnetometry. Our analysis revealed significant differences in the properties of magnetite NPs prepared with this approach, and the conventional two-precursor hydrothermal microwave method (sample MagH). FTIR and PXRD analyses confirmed coated magnetite particles. The temperature and magnetic-field dependence of magnetization indicate their superparamagnetic behavior. Importantly, the results of our study show the noticeable cytotoxicity of coated magnetite NPs-toxic to carcinoma cells but harmless to healthy cells-further emphasizing the potential of these NPs for biomedical applications.

3.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38473736

Debye temperatures of α-SnxFe1-xOOH nanoparticles (x = 0, 0.05, 0.10, 0.15 and 0.20, abbreviated as Sn100x NPs) prepared by hydrothermal reaction were estimated with 57Fe- and 119Sn-Mössbauer spectra measured by varying the temperature from 20 to 300 K. Electrical properties were studied by solid-state impedance spectroscopy (SS-IS). Together, the charge-discharge capacity of Li- and Na-ion batteries containing Sn100x NPs as a cathode were evaluated. 57Fe-Mössbauer spectra of Sn10, Sn15, and Sn20 measured at 300 K showed only one doublet due to the superparamagnetic doublet, while the doublet decomposed into a sextet due to goethite at the temperature below 50 K for Sn 10, 200 K for Sn15, and 100 K for Sn20. These results suggest that Sn10, Sn15 and Sn20 had smaller particles than Sn0. On the other hand, 20 K 119Sn-Mössbauer spectra of Sn15 were composed of a paramagnetic doublet with an isomer shift (δ) of 0.24 mm s-1 and quadrupole splitting (∆) of 3.52 mm s-1. These values were larger than those of Sn10 (δ: 0.08 mm s-1, ∆: 0.00 mm s-1) and Sn20 (δ: 0.10 mm s-1, ∆: 0.00 mm s-1), suggesting that the SnIV-O chemical bond is shorter and the distortion of octahedral SnO6 is larger in Sn15 than in Sn10 and Sn20 due to the increase in the covalency and polarization of the SnIV-O chemical bond. Debye temperatures determined from 57Fe-Mössbauer spectra measured at the low temperature were 210 K, 228 K, and 250 K for Sn10, Sn15, and Sn20, while that of α-Fe2O3 was 324 K. Similarly, the Debye temperature of 199, 251, and 269 K for Sn10, Sn15, and Sn20 were estimated from the temperature-dependent 119Sn-Mössbauer spectra, which were significantly smaller than that of BaSnO3 (=658 K) and SnO2 (=382 K). These results suggest that Fe and Sn are a weakly bound lattice in goethite NPs with low crystallinity. Modification of NPs and addition of Sn has a positive effect, resulting in an increase in DC conductivity of almost 5 orders of magnitude, from a σDC value of 9.37 × 10-7 (Ω cm)-1 for pure goethite Sn (Sn0) up to DC plateau for samples containing 0.15 and 0.20 Sn (Sn15 and Sn20) with a DC value of ~4 × 10-7 (Ω cm)-1 @423 K. This non-linear conductivity pattern and levelling at a higher Sn content suggests that structural modifications have a notable impact on electron transport, which is primarily governed by the thermally activated via three-dimensional hopping of small polarons (SPH). Measurements of SIB performance, including the Sn100x cathode under a current density of 50 mA g-1, showed initial capacities of 81 and 85 mAh g-1 for Sn0 and Sn15, which were larger than the others. The large initial capacities were measured at a current density of 5 mA g-1 found at 170 and 182 mAh g-1 for Sn15 and Sn20, respectively. It is concluded that tin-goethite NPs are an excellent material for a secondary battery cathode and that Sn15 is the best cathode among the studied Sn100x NPs.


Iron Compounds , Temperature , Electron Spin Resonance Spectroscopy , Iron Compounds/chemistry , Minerals
4.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article En | MEDLINE | ID: mdl-37762603

The present study investigates the relationship between the local structure, photocatalytic ability, and cathode performances in sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) using Ni-substituted goethite nanoparticles (NixFe1-xOOH NPs) with a range of 'x' values from 0 to 0.5. The structural characterization was performed applying various techniques, including X-ray diffractometry (XRD); thermogravimetry differential thermal analysis (TG-DTA); Fourier transform infrared spectroscopy (FT-IR); X-ray absorption spectroscopy (XANES/EXAFS), both measured at room temperature (RT); 57Fe Mössbauer spectroscopy recorded at RT and low temperatures (LT) from 20 K to 300 K; Brunauer-Emmett-Teller surface area measurement (BET), and diffuse reflectance spectroscopy (DRS). In addition, the electrical properties of NixFe1-xOOH NPs were evaluated by solid-state impedance spectroscopy (SS-IS). XRD showed the presence of goethite as the only crystalline phase in prepared samples with x ≤ 0.20, and goethite and α-Ni(OH)2 in the samples with x > 0.20. The sample with x = 0.10 (Ni10) showed the highest photo-Fenton ability with a first-order rate constant value (k) of 15.8 × 10-3 min-1. The 57Fe Mössbauer spectrum of Ni0, measured at RT, displayed a sextet corresponding to goethite, with an isomer shift (δ) of 0.36 mm s-1 and a hyperfine magnetic distribution (Bhf) of 32.95 T. Moreover, the DC conductivity decreased from 5.52 × 10-10 to 5.30 × 10-12 (Ω cm)-1 with 'x' increasing from 0.10 to 0.50. Ni20 showed the highest initial discharge capacity of 223 mAh g-1, attributed to its largest specific surface area of 174.0 m2 g-1. In conclusion, NixFe1-xOOH NPs can be effectively utilized as visible-light-activated catalysts and active cathode materials in secondary batteries.


Minerals , Nanoparticles , Spectroscopy, Fourier Transform Infrared , Electrodes
5.
Nanomaterials (Basel) ; 13(17)2023 Sep 02.
Article En | MEDLINE | ID: mdl-37686989

In this study, we present a new approach for the synthesis of Pt/SnO2 catalysts using microwave radiation. Pt(IV) and Sn(IV) inorganic precursors (H2PtCl6 and SnCl4) and ammonia were used, which allowed the controlled formation of platinum particles on the anisotropic SnO2 support. The synthesized Pt/SnO2 samples are mesoporous and exhibit a reversible physisorption isotherm of type IV. The XRD patterns confirmed the presence of platinum maxima in all Pt/SnO2 samples. The Williamson-Hall diagram showed SnO2 anisotropy with crystallite sizes of ~10 nm along the c-axis (< 00l >) and ~5 nm along the a-axis (< h00 >). SEM analysis revealed anisotropic, urchin-like SnO2 particles. XPS results indicated relatively low average oxidation states of platinum, close to Pt metal. 119Sn Mössbauer spectroscopy indicated electronic interactions between Pt and SnO2 particles. The synthesized samples were used for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of excess NaBH4. The catalytic activity of the Pt/SnO2 samples for the reduction of 4-NP to 4-AP was optimized by varying the synthesis parameters and Pt loading. The optimal platinum loading for the reduction of 4-NP to 4-AP on the anisotropic SnO2 support is 5 mol% with an apparent rate constant k = 0.59 × 10-2 s-1. The Pt/SnO2 sample showed exceptional reusability and retained an efficiency of 81.4% after ten cycles.

6.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Article En | MEDLINE | ID: mdl-37110992

Nanostructured cemented carbides with Co binders have shown excellent mechanical properties in various applications. Nevertheless, their corrosion resistance has shown to be insufficient in different corrosive environments, leading to premature tool failure. In this study, WC-based cemented carbide samples with different binders were produced using 9 wt% of FeNi or FeNiCo with the addition of Cr3C2 and NbC as the grain growth inhibitors. The samples were investigated using electrochemical corrosion techniques: the open circuit potential Ecorr, the linear polarization resistance (LPR), the Tafel extrapolation method, and the electrochemical impedance spectroscopy (EIS) at room temperature in the solution of 3.5% NaCl. Microstructure characterization, surface texture analysis, and instrumented indentation were conducted to investigate the influence of corrosion on the micro-mechanical properties and the surface characteristics of the samples before and after corrosion. The obtained results indicate a strong binder chemical composition's effect on the consolidated materials' corrosive behavior. Compared to the conventional WC-Co systems, a significantly improved corrosion resistance was observed for both alternative binder systems. The study shows that the samples with the FeNi binder are superior to those with the FeNiCo binder since they were almost unaffected when exposed to the acidic medium.

7.
Nanomaterials (Basel) ; 13(4)2023 Feb 15.
Article En | MEDLINE | ID: mdl-36839107

The adsorption of the antibiotic ciprofloxacin (CIP) from water solution by natural zeolite-clinoptilolite (CLI), magnetic clinoptilolite (MAG-CLI), and graphene oxide coated magnetic clinoptilolite (GO-MAG-CLI) was investigated. The novel approach of an environmentally friendly and cost-effective microwave-assisted method was applied for the magnetic composite synthesis. Detailed characterization of the prepared composites was achieved. In order to investigate the effect of the initial CIP concentration, pH, temperature, contact time, and type of adsorbent on the adsorption efficiency of CIP, and to obtain the optimal conditions for CIP removal, the response surface methodology central composite factorial design (RSM-CCF) was applied. The results obtained by the RSM-CCF showed that among the studied adsorbents, GO-MAG-CLI had the highest adsorption capacity for CIP, achieved for the initial concentration of 48.47 mg dm-3 at a pH of 5 and 24.78 °C after 19.20 min of contact time. The adsorption kinetics studied for the initial CIP concentration range of 15-50 mg dm-3 followed Lagergren's pseudo-second-order model, and the Langmuir isotherm was the most suitable one to describe the CIP adsorption onto GO-MAG-CLI.

8.
Biosensors (Basel) ; 12(11)2022 Oct 27.
Article En | MEDLINE | ID: mdl-36354441

Morphine (MORPH) is natural alkaloid and mainly used as a pain reliever. Its monitoring in human body fluids is crucial for modern medicine. In this paper, we have developed an electrochemical sensor for submicromolar detection of MORPH. The sensor is based on modified carbon paste electrode (CPE) by investigating the FexW1-xO4 ratio in iron tungstate (FeWO4), as well as the ratio of this material in CPE. For the first time, the effect of the iron-tungsten ratio in terms of achieving the best possible electrochemical characteristics for the detection of an important molecule for humans was examined. Morphological and electrochemical characteristics of materials were studied. The best results were obtained using Fe1W3 and 7.5% of modifier in CPE. For MORPH detection, square wave voltammetry (SWV) was optimized. Under the optimized conditions, Fe1W3@CPE resulted in limit of detection (LOD) of the method of 0.58 µM and limit of quantification (LOQ) of 1.94 µM. The linear operating range between 5 and 85 µM of MORPH in the Britton-Robinson buffer solution (BRBS) at pH 8 as supporting electrolyte was obtained. The Fe1W3@CPE sensor resulted in good selectivity and excellent repeatability with relative standard deviation (RSD) and was applied in real-world samples of human urine. Application for direct MORPH detection, without tedious sample pretreatment procedures, suggests that developed electrochemical sensor has appeared to be a suitable competitor for efficient, precise, and accurate monitoring of the MORPH in biological fluids.


Carbon , Electrochemical Techniques , Humans , Carbon/chemistry , Electrochemical Techniques/methods , Electrodes , Iron , Morphine Derivatives
9.
Nanomaterials (Basel) ; 12(17)2022 Aug 25.
Article En | MEDLINE | ID: mdl-36079974

With the growing number of flexible electronics applications, environmentally benign ways of mass-producing graphene electronics are sought. In this study, we present a scalable mechanochemical route for the exfoliation of graphite in a planetary ball mill with melamine to form melamine-intercalated graphene nanosheets (M-GNS). M-GNS morphology was evaluated, revealing small particles, down to 14 nm in diameter and 0.4 nm thick. The M-GNS were used as a functional material in the formulation of an inkjet-printable conductive ink, based on green solvents: water, ethanol, and ethylene glycol. The ink satisfied restrictions regarding stability and nanoparticle size; in addition, it was successfully inkjet printed on plastic sheets. Thermal and photonic post-print processing were evaluated as a means of reducing the electrical resistance of the printed features. Minimal sheet resistance values (5 kΩ/sq for 10 printed layers and 626 Ω/sq for 20 printed layers) were obtained on polyimide sheets, after thermal annealing for 1 h at 400 °C and a subsequent single intense pulsed light flash. Lastly, a proof-of-concept simple flexible printed circuit consisting of a battery-powered LED was realized. The demonstrated approach presents an environmentally friendly alternative to mass-producing graphene-based printed flexible electronics.

10.
Materials (Basel) ; 14(20)2021 Oct 13.
Article En | MEDLINE | ID: mdl-34683643

This study aimed to determine the effects of three different varnish materials (containing casein phosphopeptide-amorphous calcium phosphate, nano-hydroxyapatite, and fluoride) on enamel. Thirty-three extracted human third molars were used for specimen preparation. These were demineralized using phosphoric acid. Three experimental groups (n = 11) were treated with 3M™ Clinpro™ White Varnish, MI Varnish®, and Megasonex® toothpaste, respectively, every twenty-four hours for fourteen days. Analysis of the microhardness of the specimens' enamel surfaces was carried out via the Vickers method, and by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS). Analysis was performed at three stages: at baseline value, after demineralization, and after the period of remineralization. Data were subjected to Scheffe's post hoc test. The mean microhardness values (HV0.1) obtained for the group of samples treated with MI Varnish® were higher compared with the other two groups (p = 0.001 for both comparisons), while the first and third groups did not differ significantly from each other (p = 0.97). SEM analysis showed uneven patterns and porosities on all samples tested. EDS results showed an increase in the mineral content of the examined samples, with the highest mineral content observed in the MI Varnish® group. It can be concluded that MI Varnish® use has a better remineralization effect on enamel than the other two materials.

11.
Sensors (Basel) ; 22(1)2021 Dec 31.
Article En | MEDLINE | ID: mdl-35009839

The solid-state ion-selective electrodes presented here are based on the FePO4:Ag2S:polytetrafluoroethylene (PTFE) = 1:1:2 with an addition of (0.25-1)% microwave-synthesized hematite (α-Fe2O3), magnetite (Fe3O4), boehmite [γ-AlO(OH)], and alumina (Al2O3) nanoparticles (NPs) in order to establish ideal membrane composition for iron(III) cations determination. Synthesized NPs are characterized with Fourier-Transform Infrared (FTIR) spectroscopy, Powder X-Ray Diffraction (PXRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS). The iron oxides NPs, more specifically, magnetite and hematite, showed a more positive effect on the sensing properties than boehmite and alumina NPs. The hematite NPs had the most significant effect on the linear range for the determination of ferric cations. The membrane containing 0.25% hematite NPs showed a slope of -19.75 mV per decade in the linear range from 1.2∙10-6 to 10-2 mol L-1, with a correlation factor of 0.9925. The recoveries for the determination of ferric cations in standard solutions were 99.4, 106.7, 93.6, and 101.1% for different concentrations.

12.
J Hazard Mater ; 403: 123613, 2021 02 05.
Article En | MEDLINE | ID: mdl-32814242

Red mud (RM) contains large quantities of microscale particles < 1 µm and high concentrations of potentially toxic elements. In this research, we have used two types of RM of similar chemical properties but containing different quantities of micro-particles, to test whether their size plays a role in the uptake of chemical elements by earthworm Eisenia fetida. Earthworms were exposed for seven days to artificial soils (prepared in the laboratory following a protocol) amended with increasing quantities of RM. Mortality of 86 % occurred when earthworms were exposed to amended soil containing 46 % of particles below 1 µm. Surprisingly, tissue analyses have shown decreased concentrations of metals instead of the expected toxic effect. SEM analysis revealed that micro-particles strongly adhere to the earthworm epidermis putting them under the large stress. Micro-particles in RM clog their minute dermal pores of 90 nm-735 nm in diameter, which size depends on whether the earthworm's body is contracted or stretched. Strong adhesion of micro-particles to earthworms' epidermis and blockage of their microsize pores prevented normal dermal respiration and absorption of chemical elements through their epithelium resulting in a decrease of most measured metals, especially essential elements potassium, calcium and iron, followed by the lethal outcomes.


Oligochaeta , Soil Pollutants , Animals , Bioaccumulation , Soil , Soil Pollutants/analysis , Soil Pollutants/toxicity
13.
Appl Spectrosc ; 69(12): 1417-24, 2015 Dec.
Article En | MEDLINE | ID: mdl-26556231

Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.


Metal Nanoparticles/chemistry , Silicon/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Limit of Detection , Models, Chemical , Porosity , Rhodamines/analysis , Rhodamines/chemistry
14.
Photomed Laser Surg ; 32(3): 160-7, 2014 Mar.
Article En | MEDLINE | ID: mdl-24555520

OBJECTIVE: The purpose of this study was to evaluate the efficiency of experimental light-activated bleaching procedures. BACKGROUND DATA: The improved color effect may be attributed to the potential photochemical effect of light-emitting diode (LED405), organic LED (OLED), and femtosecond laser rather than to the photothermal effect of conventional lights used for tooth bleaching. MATERIALS AND METHODS: Specially made pastilles of hydroxylapatite were immersed in green tea for 8 h and randomly divided into four groups (n=50) specified by the type of light source applied during a 30 min bleaching treatment: LED405, OLED, and femtosecond laser, or its absence (control group). Each group was treated with five bleaching gels: 10%, 16%, and 30% carbamide peroxide (CP), and 25% and 38% hydrogen peroxide (HP). Changes in color were determined by red-green-blue (RGB) colorimeter and ultraviolet-visible-near-infrared (UV/Vis/NIR) spectroscopy. RESULTS: Regardless of the applied bleaching gel, LED405 produced a larger increase in the value of RGB index than did OLED and bleaching without light activation (p<0.05). Femtosecond laser also produced significantly better results in combination with 16% CP and 38% HP. Furthermore, application of a bleaching agent with a higher concentration of peroxide boosted the value of the RGB index. Spectroscopic measurements revealed similar results, although treatments with OLED were rated relatively better than in RGB analysis. CONCLUSIONS: The mechanisms of light-activated bleaching procedures had a significant effect on the color change. The bleaching activation with LED405 and higher concentrations of peroxide in bleaching agents promoted better whitening effect.


Light , Tooth Bleaching/methods , Curing Lights, Dental , Durapatite , Lasers , Spectrum Analysis
15.
Acta Clin Croat ; 52(4): 419-29, 2013 Dec.
Article En | MEDLINE | ID: mdl-24696990

Bleaching agents have effect on chemical/physical and morphological structure of enamel and dentin that must be taken into account when this therapy is used. The aim of this in vitro study was to evaluate the effects of two bleaching agents containing a high concentration of hydrogen peroxide for professional use on human enamel and dentin surface and to evaluate the potential remineralizing effect of amorphous calcium phosphate gel (ACP). Twenty-five human third molars were divided into two groups and dissected in half and both surfaces were bleached with either ZOOM2 or Opalescence BOOST for 3 x 15 minutes. Vickers microhardness of enamel and dentin was measured before, after the bleaching treatment, and after treatment with artificial saliva and ACP gel or 2-week storage in deionized water. Surface microstructure was evaluated using scanning electron microscopy. The mixed model ANOVA and Wilcoxon Rank Sum test were used. Both bleaching agents showed significant reduction in surface microhardness (p < 0.001 for both BOOST and ZOOM2 application). ZOOM2, which had a lower pH value showed greater decrease in surface microhardness (p = 0.005) compared to BOOST. Post-treatment with artificial saliva and ACP showed significant increase in surface microhardness (p < 0.001). After the bleaching procedure, enamel and dentin surface microstructure showed mild or slight alterations with no loss of superficial structure. In conclusion, both bleaching agents resulted in reduction in surface enamel and dentin microhardness. Treatment with ACP led to increase in surface microhardness, improved surface roughness, and enhanced remineralization of the hard dental tissues.


Calcium Phosphates/administration & dosage , Dental Enamel/drug effects , Hydrogen Peroxide/administration & dosage , Tooth Bleaching/methods , Tooth Remineralization , Analysis of Variance , Dose-Response Relationship, Drug , Hardness/drug effects , Humans , Surface Properties/drug effects
...