Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Drug Healthc Patient Saf ; 15: 25-38, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36742440

RESUMEN

Purpose: The aim of this study was to characterize the frequency of adverse effects where delta-8 tetrahydrocannabinol (D8-THC) was identified as a possible suspect drug in the FDA Adverse Event Reporting System (FAERS) database. Methods: A case-series design was used. Results: A total of 183 cases listed D8-THC as a suspect drug in FAERS as of June 30, 2021. The most common events included dyspnea, respiratory disorder, and seizure. The reporting odds ratios were consistently and significantly greater than 2, a 2-fold increase from 2019 to 2021, indicating a potential safety signal. Conclusion: The first report of D8-THC, in the FAERS database, as a suspect drug appears to be in 2011. Overall, there are 183 total cases listing D8-THC as a suspect drug in the FAERS database as of June 30, 2021. Of the 183 cases, most were respiratory in nature.

3.
J Biol Chem ; 289(9): 5828-45, 2014 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-24366865

RESUMEN

The cannabinoid 1 (CB1) allosteric modulator, 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide) (ORG27569), has the paradoxical effect of increasing the equilibrium binding of [(3)H](-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl]cyclohexan-1-ol (CP55,940, an orthosteric agonist) while at the same time decreasing its efficacy (in G protein-mediated signaling). ORG27569 also decreases basal signaling, acting as an inverse agonist for the G protein-mediated signaling pathway. In ligand displacement assays, ORG27569 can displace the CB1 antagonist/inverse agonist, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). The goal of this work was to identify the binding site of ORG27569 at CB1. To this end, we used computation, synthesis, mutation, and functional studies to identify the ORG27569-binding site in the CB1 TMH3-6-7 region. This site is consistent with the results of K3.28(192)A, F3.36(200)A, W5.43(279)A, W6.48(356)A, and F3.25(189)A mutation studies, which revealed the ORG27569-binding site overlaps with our previously determined binding site of SR141716A but extends extracellularly. Additionally, we identified a key electrostatic interaction between the ORG27569 piperidine ring nitrogen and K3.28(192) that is important for ORG27569 to act as an inverse agonist. At this allosteric site, ORG27569 promotes an intermediate conformation of the CB1 receptor, explaining ORG27569's ability to increase equilibrium binding of CP55,940. This site also explains ORG27569's ability to antagonize the efficacy of CP55,940 in three complementary ways. 1) ORG27569 sterically blocks movements of the second extracellular loop that have been linked to receptor activation. 2) ORG27569 sterically blocks a key electrostatic interaction between the third extracellular loop residue Lys-373 and D2.63(176). 3) ORG27569 packs against TMH6, sterically hindering movements of this helix that have been shown to be important for receptor activation.


Asunto(s)
Antagonistas de Receptores de Cannabinoides/farmacología , Indoles/farmacología , Simulación de Dinámica Molecular , Piperidinas/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/genética , Sitios de Unión , Antagonistas de Receptores de Cannabinoides/química , Células HEK293 , Humanos , Indoles/química , Piperidinas/química , Unión Proteica , Pirazoles , Receptor Cannabinoide CB1/metabolismo , Rimonabant , Transducción de Señal/genética
4.
Mol Cancer Ther ; 9(1): 180-9, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20053780

RESUMEN

The cannabinoid 1 (CB(1)) and cannabinoid 2 (CB(2)) receptor agonist Delta(9)-tetrahydrocannabinol (THC) has been shown to be a broad-range inhibitor of cancer in culture and in vivo, and is currently being used in a clinical trial for the treatment of glioblastoma. It has been suggested that other plant-derived cannabinoids, which do not interact efficiently with CB(1) and CB(2) receptors, can modulate the actions of Delta(9)-THC. There are conflicting reports, however, as to what extent other cannabinoids can modulate Delta(9)-THC activity, and most importantly, it is not clear whether other cannabinoid compounds can either potentiate or inhibit the actions of Delta(9)-THC. We therefore tested cannabidiol, the second most abundant plant-derived cannabinoid, in combination with Delta(9)-THC. In the U251 and SF126 glioblastoma cell lines, Delta(9)-THC and cannabidiol acted synergistically to inhibit cell proliferation. The treatment of glioblastoma cells with both compounds led to significant modulations of the cell cycle and induction of reactive oxygen species and apoptosis as well as specific modulations of extracellular signal-regulated kinase and caspase activities. These specific changes were not observed with either compound individually, indicating that the signal transduction pathways affected by the combination treatment were unique. Our results suggest that the addition of cannabidiol to Delta(9)-THC may improve the overall effectiveness of Delta(9)-THC in the treatment of glioblastoma in cancer patients.


Asunto(s)
Cannabidiol/farmacología , Dronabinol/farmacología , Glioblastoma/patología , Apoptosis/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Glioblastoma/enzimología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptor Cannabinoide CB2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA