Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Fungi (Basel) ; 7(9)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34575734

RESUMEN

The present work highlights the valorization of the bulky recalcitrant lignocellulose byproduct wheat straw (WS) for the enhanced production of value-added xylanase by the locally sourced novel Penicillium chrysogenum strain A3 DSM105774 for the first time. The optimized production of xylanase by submerged state of fermentation of WS was achieved using a three-step statistical and sequential approach: one factor at a time (OFAT), Plackett-Burman design (PBD), and Box Behnken design (BBD). Incubation temperature (30 °C), WS, and ammonium sulphate were the key determinants prompting xylanase production; inferred from OFAT. The WS concentration (%(w/v)), yeast extract concentration (%(w/v)), and initial pH of the production medium imposed significant effects (p ≤ 0.05) on the produced xylanase, realized from PBD. The predicted levels of WS concentration, initial pH of the production medium, and yeast extract concentration provoking the ultimate xylanase levels (53.7 U/mL) with an 8.95-fold enhancement, localized by the estimated ridge of the steepest ascent of the ridge analysis path, were 3.8% (w/v), 5.1, and 0.098% (w/v), respectively; 94.7% lab validation. The current data underpin the up-scaling of xylanase production using this eco-friendly, cheap, and robust methodology for the valorization of WS into the value-added product xylanase.

2.
PLoS One ; 11(12): e0167981, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27992459

RESUMEN

Pectic-Oligosaccharides (POS) have a growing potential in food and feed industries. To satisfy the demand of worldwide markets from POS and avoid the shortcomings of currently applied methodologies encountered in their preparation, the present study highlights a novel robust approach for POS biosynthesis. In the current approach, Aspergillus sp.section Flavi strain EGY1 DSM 101520 was grown on citrus pectin-based medium as a core POS production medium. POS' levels accumulated in the fungal fermentation broth were optimized through a three step sequential statistical mathematical methodology; Plackett-Burman design (PBD), Box-Behnken design (BBD) and canonical analysis. Three key determinants namely citrus pectin, peptone and NaH2PO4 were pointed out by PBD to impose significant consequences (P<0.05) on the process outcome (POS' levels). Optimal levels of these key determinants along with maximal of POS' levels were set by BBD and canonical analysis to be 2.28% (w/v) citrus pectin, 0.026% (w/v) peptone and 0.28% (w/v) NaH2PO4 to achieve a net amount of 1.3 g POS /2.28 g citrus pectin. Through this approach, a yield of 57% (w/w) POS of the total citrus pectin was obtained after 24 h of fungal growth on optimized citrus pectin-based medium. A fold enhancement of 13 times in POS' levels released in the fermentation fungal broth was realized by the end of the optimization strategy. This novel robust approach is considered a new insight towards POS biosynthesis via efficient, rapid and non-cumbersome procedure. To the best of authors' knowledge, the present work is the first article underlining detailed POS production from the fermentation broth of a fungus growing on citrus pectin-based medium.


Asunto(s)
Aspergillus/crecimiento & desarrollo , Oligosacáridos/biosíntesis , Pectinas/química , Aspergillus/metabolismo , Metabolismo de los Hidratos de Carbono , Fermentación , Industria de Alimentos , Concentración de Iones de Hidrógeno , Peptonas/química , Fosfatos/química
3.
Springerplus ; 3: 327, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25077057

RESUMEN

The current study underlines biotechnological valorization of the accumulated and the non-efficiently utilized agro-industrial orange peel waste to produce polygalacturonase (PGase), an industrially important enzyme with augmented demands in enzymes markets, from Bacillus licheniformis SHG10. Sequential statistical optimization of PGase production was performed through one variable at a time (OVAT) approach, Plackett-Burman (PB) and response surface methodology (RSM). The impact of introduction of six raw agro-industrial wastes (orange, lemon, banana, pomegranate, artichoke peel wastes and wheat bran) and other synthetic carbon sources separately into the fermentation broth on PGase productivity was studied through OVAT approach. Orange peel waste as sole raw carbon source in basal medium proved to be the best PGase inducer. It promoted PGase productivity with relative specific activity of 166% comparable with the effect imposed by synthetic citrus pectin as a reference inducer. Three key determinants (orange peel waste, pH of the production medium and incubation temperature) had RSM optimal levels of 1.76% (w/v), 8.0 and 37.8°C, respectively along with maximal PGase level (2.69 µg galacturonic acid. min(-1). mg(-1)) within 48 hrs. Moreover, SHG10 PGase exhibited activity over a wide range of pH (3-11) and an optimal activity at 50°C. Data greatly encourage pilot scale PGase production from B. licheniformis SHG10.

4.
ScientificWorldJournal ; 2014: 396304, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25614886

RESUMEN

Bacteriocins, ribosomally synthesized antimicrobial peptides, display potential applications in agriculture, medicine, and industry. The present study highlights integral statistical optimization and partial characterization of a bacteriocin substance from a soil bacterium taxonomically affiliated as Bacillus sp. YAS 1 after biochemical and molecular identifications. A sequential statistical approach (Plackett-Burman and Box-Behnken) was employed to optimize bacteriocin (BAC YAS 1) production. Using optimal levels of three key determinants (yeast extract (0.48% (w/v), incubation time (62 hrs), and agitation speed (207 rpm)) in peptone yeast beef based production medium resulted in 1.6-fold enhancement in BAC YAS 1 level (470 AU/mL arbitrary units against Erwinia amylovora). BAC YAS 1 showed activity over a wide range of pH (1-13) and temperature (45-80 °C). A wide spectrum antimicrobial activity of BAC YAS 1 against the human pathogens (Clostridium perfringens, Staphylococcus epidermidis, Campylobacter jejuni, Enterobacter aerogenes, Enterococcus sp., Proteus sp., Klebsiella sp., and Salmonella typhimurium), the plant pathogen (E. amylovora), and the food spoiler (Listeria innocua) was demonstrated. On top and above, BAC YAS 1 showed no antimicrobial activity towards lactic acid bacteria (Lactobacillus bulgaricus, L. casei, L. lactis, and L. reuteri). Promising characteristics of BAC YAS 1 prompt its commercialization for efficient utilization in several industries.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Bacillus/química , Bacteriocinas/biosíntesis , Microbiología del Suelo , Antiinfecciosos/química , Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/biosíntesis , Péptidos Catiónicos Antimicrobianos/química , Bacteriocinas/química , Bacteriocinas/farmacología , Clostridium perfringens/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA