Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 4(3): 102473, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37616164

RESUMEN

Integrin-dependent cell-extracellular matrix adhesion is essential for wound healing, embryonic development, immunity, and tissue organization. Here, we present a protocol for the imaging and quantitative analysis of integrin-dependent cell-matrix adhesions. We describe steps for cell culture; virus preparation; lentiviral transduction; imaging with widefield, confocal, and total internal reflection fluorescence microscopy; and using a script for their quantitative analysis. We then detail procedures for analyzing adhesion dynamics by live-cell imaging and fluorescence recovery after photobleaching (FRAP). For complete details on the use and execution of this protocol, please refer to Margadant et al. (2012),1 van der Bijl et al. (2020),2 Amado-Azevedo et al. (2021).3.


Asunto(s)
Técnicas de Cultivo de Célula , Microscopía , Femenino , Embarazo , Humanos , Uniones Célula-Matriz , Desarrollo Embrionario , Integrinas
2.
Res Pract Thromb Haemost ; 7(2): 100086, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36923710

RESUMEN

Background: Patients with gray platelet syndrome (GPS) and Neurobeachin-like 2 (NBEAL2) deficiency produce platelets lacking alpha-granules (AGs) and present with lifelong bleeding symptoms. AGs are lysosome-related organelles and store the hemostatic protein von Willebrand factor (VWF) and the transmembrane protein P-selectin. Weibel-Palade bodies (WPBs) are lysosome-related organelles of endothelial cells and also store VWF and P-selectin. In megakaryocytes, NBEAL2 links P-selectin on AGs to the SNARE protein SEC22B on the endoplasmic reticulum, thereby preventing premature release of cargo from AG precursors. In endothelial cells, SEC22B drives VWF trafficking from the endoplasmic reticulum to Golgi and promotes the formation of elongated WPBs, but it is unclear whether this requires NBEAL2. Objectives: To investigate a potential role for NBEAL2 in WPB biogenesis and VWF secretion using NBEAL2-deficient endothelial cells. Methods: The interaction of SEC22B with NBEAL2 in endothelial cells was investigated by interatomic mass spectrometry and pull-down analysis. Endothelial colony forming cells were isolated from healthy controls and 3 unrelated patients with GPS and mutations in NBEAL2. Results: We showed that SEC22B binds to NBEAL2 in ECs. Endothelial colony forming cells derived from a patient with GPS are deficient in NBEAL2 but reveal normal formation and maturation of WPBs and normal WPB cargo recruitment. Neither basal nor histamine-induced VWF secretion is altered in the absence of NBEAL2. Conclusions: Although NBEAL2 deficiency causes the absence of AGs in patients with GPS, it does not impact WPB functionality in ECs. Our data highlight the differences in the regulatory mechanisms between these 2 hemostatic storage compartments.

3.
Circ Res ; 132(3): 355-378, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36730379

RESUMEN

The endothelium is a dynamic, semipermeable layer lining all blood vessels, regulating blood vessel formation and barrier function. Proper composition and function of the endothelial barrier are required for fluid homeostasis, and clinical conditions characterized by barrier disruption are associated with severe morbidity and high mortality rates. Endothelial barrier properties are regulated by cell-cell junctions and intracellular signaling pathways governing the cytoskeleton, but recent insights indicate an increasingly important role for integrin-mediated cell-matrix adhesion and signaling in endothelial barrier regulation. Here, we discuss diseases characterized by endothelial barrier disruption, and provide an overview of the composition of endothelial cell-matrix adhesion complexes and associated signaling pathways, their crosstalk with cell-cell junctions, and with other receptors. We further present recent insights into the role of cell-matrix adhesions in the developing and mature/adult endothelium of various vascular beds, and discuss how the dynamic regulation and turnover of cell-matrix adhesions regulates endothelial barrier function in (patho)physiological conditions like angiogenesis, inflammation and in response to hemodynamic stress. Finally, as clinical conditions associated with vascular leak still lack direct treatment, we focus on how understanding of endothelial cell-matrix adhesion may provide novel targets for treatment, and discuss current translational challenges and future perspectives.


Asunto(s)
Células Endoteliales , Integrinas , Integrinas/metabolismo , Células Endoteliales/metabolismo , Uniones Intercelulares/metabolismo , Uniones Célula-Matriz/metabolismo , Endotelio Vascular/metabolismo , Adhesión Celular/fisiología
4.
Methods Mol Biol ; 2608: 1-14, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653698

RESUMEN

Cell migration plays an essential role in many pathophysiological processes, including embryonic development, wound healing, immunity, and cancer invasion, and is therefore a widely studied phenomenon in many different fields from basic cell biology to regenerative medicine. During the past decades, a multitude of increasingly complex methods have been developed to study cell migration. Here we compile a series of current state-of-the-art methods and protocols to investigate cell migration in a variety of model systems ranging from cells, organoids, tissue explants, and microfluidic systems to Drosophila, zebrafish, and mice. Together they cover processes as diverse as nuclear deformation, energy consumption, endocytic trafficking, and matrix degradation, as well as tumor vascularization and cancer cell invasion, sprouting angiogenesis, and leukocyte extravasation. Furthermore, methods to study developmental processes such as neural tube closure, germ layer specification, and branching morphogenesis are included, as well as scripts for the automated analysis of several aspects of cell migration. Together, this book constitutes a unique collection of methods of prime importance to those interested in the analysis of cell migration.


Asunto(s)
Desarrollo Embrionario , Pez Cebra , Animales , Ratones , Movimiento Celular/fisiología , Morfogénesis , Drosophila
5.
Methods Mol Biol ; 2608: 365-387, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36653718

RESUMEN

Collective cell migration is crucial for a variety of pathophysiological processes including embryonic development, wound healing, carcinoma invasion, and sprouting angiogenesis. The behavior of leading and following cells during migration is highly dynamic and involves extensive cellular morphological changes mediated by the actin cytoskeleton. Imaging these rapid and dynamic changes over time requires expression of fluorescent proteins and/or live labeling with fluorescent probes, followed by acquiring series of image stacks at short intervals. This presents significant challenges related to dye cytotoxicity, signal loss, and in particular phototoxicity resulting from repeated irradiation, especially when using separate channels for multiple dyes and when imaging large z-stacks at short time intervals. In this chapter, we present methods for multicolor live-cell labeling of primary human endothelial cell populations, followed by multi-position time-lapse imaging in 2D and in 3D protein matrices. These approaches can be performed in combination with RNA interference to suppress the expression of specific proteins, as well as in mosaic assays using mixtures of differentially labeled cell populations. Finally, we present a protocol for long-term imaging at low laser intensity to minimize laser-induced cell damage, followed by post-imaging signal enhancement using artificial intelligence.


Asunto(s)
Inteligencia Artificial , Citoesqueleto , Humanos , Movimiento Celular , Citoesqueleto de Actina/metabolismo , Diagnóstico por Imagen
6.
Blood Rev ; 59: 101038, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36581513

RESUMEN

FNAIT is a pregnancy-associated condition caused by maternal alloantibodies against paternally-inherited platelet antigens, most frequently HPA-1a on integrin ß3. The clinical effects range from no symptoms to fatal intracranial hemorrhage, but underlying pathophysiological determinants are poorly understood. Accumulating evidence suggests that differential antibody-Fc-glycosylation, activation of complement/effector cells, and integrin function-blocking effects contribute to clinical outcome. Furthermore, some antibodies preferentially bind platelet integrin αIIbß3, but others bind αvß3 on endothelial cells and trophoblasts. Defects in endothelial cells and angiogenesis may therefore contribute to severe anti-HPA-1a associated FNAIT. Moreover, anti-HPA-1a antibodies may cause placental damage, leading to intrauterine growth restriction. We discuss current insights into diversity and actions of HPA-1a antibodies, gathered from clinical studies, in vitro studies, and mouse models. Assessment of all factors determining severity and progression of anti-HPA-1a-associated FNAIT may importantly improve risk stratification and potentially reveal novel treatment strategies, both for FNAIT and other immunohematological disorders.


Asunto(s)
Trombocitopenia Neonatal Aloinmune , Animales , Ratones , Embarazo , Femenino , Humanos , Trombocitopenia Neonatal Aloinmune/diagnóstico , Trombocitopenia Neonatal Aloinmune/etiología , Trombocitopenia Neonatal Aloinmune/terapia , Placenta/metabolismo , Células Endoteliales , Plaquetas/metabolismo , Isoanticuerpos
7.
FEBS J ; 289(22): 6863-6870, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35246944

RESUMEN

Von Willebrand factor (VWF) is a glycoprotein that is secreted into the circulation and controls bleeding by promoting adhesion and aggregation of blood platelets at sites of vascular injury. Substantial inter-individual variation in VWF plasma levels exists among the healthy population. Prior to secretion, VWF polymers are assembled and condensed into helical tubules, which are packaged into Weibel-Palade bodies (WPBs), a highly specialized post-Golgi storage compartment in vascular endothelial cells. In the inherited bleeding disorder Von Willebrand disease (VWD), mutations in the VWF gene can cause qualitative or quantitative defects, limiting protein function, secretion, or plasma survival. However, pathogenic VWF mutations cannot be found in all VWD cases. Although an increasing number of genetic modifiers have been identified, even more rare genetic variants that impact VWF plasma levels likely remain to be discovered. Here, we summarize recent evidence that modulation of the early secretory pathway has great impact on the biogenesis and release of WPBs. Based on these findings, we propose that rare, as yet unidentified quantitative trait loci influencing intracellular VWF transport contribute to highly variable VWF levels in the population. These may underlie the thrombotic complications linked to high VWF levels, as well as the bleeding tendency in individuals with low VWF levels.


Asunto(s)
Hemostáticos , Enfermedades de von Willebrand , Humanos , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo , Células Endoteliales/metabolismo , Hemostáticos/metabolismo , Cuerpos de Weibel-Palade/genética , Cuerpos de Weibel-Palade/metabolismo , Cuerpos de Weibel-Palade/patología , Enfermedades de von Willebrand/genética , Enfermedades de von Willebrand/metabolismo , Enfermedades de von Willebrand/patología
8.
Haematologica ; 107(8): 1827-1839, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35081689

RESUMEN

Von Willebrand factor (VWF) is a multimeric hemostatic protein primarily synthesized in endothelial cells. VWF is stored in endothelial storage organelles, the Weibel-Palade bodies (WPB), whose biogenesis strongly depends on VWF anterograde trafficking and Golgi architecture. Elongated WPB morphology is correlated to longer VWF strings with better adhesive properties. We previously identified the SNARE SEC22B, which is involved in anterograde endoplasmic reticulum-to-Golgi transport, as a novel regulator of WPB elongation. To elucidate novel determinants of WPB morphology we explored endothelial SEC22B interaction partners in a mass spectrometry-based approach, identifying the Golgi SNARE Syntaxin 5 (STX5). We established STX5 knockdown in endothelial cells using shRNA-dependent silencing and analyzed WPB and Golgi morphology, using confocal and electron microscopy. STX5-depleted endothelial cells exhibited extensive Golgi fragmentation and decreased WPB length, which was associated with reduced intracellular VWF levels, and impaired stimulated VWF secretion. However, the secretion-incompetent organelles in shSTX5 cells maintained WPB markers such as Angiopoietin 2, P-selectin, Rab27A, and CD63. In brief, we identified SNARE protein STX5 as a novel regulator of WPB biogenesis.


Asunto(s)
Cuerpos de Weibel-Palade , Factor de von Willebrand , Tamaño Corporal , Células Cultivadas , Células Endoteliales/metabolismo , Exocitosis , Humanos , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Cuerpos de Weibel-Palade/metabolismo , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
11.
STAR Protoc ; 2(3): 100690, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34557696

RESUMEN

We describe an optimized, cost-effective, reproducible, and robust protocol to study sprouting angiogenesis in glass-bottom 96-well plates by confocal microscopy, ideal for screening of drug or shRNA libraries. Effective and stable knockdown of gene expression in primary endothelial cells is achieved by lentiviral transduction. Dynamic behavior of individual cells and fluorescent proteins is analyzed by time-lapse imaging, while competitive advantages in tip cell formation are assessed using mixtures of differentially labeled cell populations. Finally, we present a macro for high-throughput analysis. For complete information on the use and execution of this protocol, please refer to van der Bijl et al. (2020) and Kempers et al. (2021).


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Microscopía Confocal/métodos , Neovascularización Fisiológica/fisiología , Células Endoteliales/metabolismo , Humanos , Morfogénesis
12.
Blood Adv ; 5(23): 5116-5127, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34551092

RESUMEN

von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized and secreted by endothelial cells and stored in Weibel-Palade bodies (WPBs). The secretory Rab GTPases Rab27A, Rab3B, and Rab3D have been linked with WPB trafficking and secretion. How these Rabs are activated and recruited to WPBs remains elusive. In this study, we identified MAP kinase-activating death domain (MADD) as the guanine nucleotide exchange factor for Rab27A and both Rab3 isoforms in primary human endothelial cells. Rab activity assays revealed a reduction in Rab27A, Rab3B, and Rab3D activation upon MADD silencing. Rab activation, but not binding, was dependent on the differentially expressed in normal and neoplastic cells (DENN) domain of MADD, indicating the potential existence of 2 Rab interaction modules. Furthermore, immunofluorescent analysis showed that Rab27A, Rab3B, and Rab3D recruitment to WPBs was dramatically decreased upon MADD knockdown, revealing that MADD drives Rab membrane targeting. Artificial mistargeting of MADD using a TOMM70 tag abolished Rab27A localization to WPB membranes in a DENN domain-dependent manner, indicating that normal MADD localization in the cytosol is crucial. Activation of Rab3B and Rab3D was reduced upon Rab27A silencing, suggesting that activation of these Rabs is enhanced through previous activation of Rab27A by MADD. MADD silencing did not affect WPB morphology, but it did reduce VWF intracellular content. Furthermore, MADD-depleted cells exhibited decreased histamine-evoked VWF release, similar to Rab27A-depleted cells. In conclusion, MADD acts as a master regulator of VWF secretion by coordinating the activation and membrane targeting of secretory Rabs to WPBs.


Asunto(s)
Cuerpos de Weibel-Palade , Proteínas de Unión al GTP rab , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Células Endoteliales/metabolismo , Exocitosis , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanosina Trifosfato , Humanos , Cuerpos de Weibel-Palade/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
13.
Angiogenesis ; 24(4): 755-788, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34184164

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is presenting as a systemic disease associated with vascular inflammation and endothelial injury. Severe forms of SARS-CoV-2 infection induce acute respiratory distress syndrome (ARDS) and there is still an ongoing debate on whether COVID-19 ARDS and its perfusion defect differs from ARDS induced by other causes. Beside pro-inflammatory cytokines (such as interleukin-1 ß [IL-1ß] or IL-6), several main pathological phenomena have been seen because of endothelial cell (EC) dysfunction: hypercoagulation reflected by fibrin degradation products called D-dimers, micro- and macrothrombosis and pathological angiogenesis. Direct endothelial infection by SARS-CoV-2 is not likely to occur and ACE-2 expression by EC is a matter of debate. Indeed, endothelial damage reported in severely ill patients with COVID-19 could be more likely secondary to infection of neighboring cells and/or a consequence of inflammation. Endotheliopathy could give rise to hypercoagulation by alteration in the levels of different factors such as von Willebrand factor. Other than thrombotic events, pathological angiogenesis is among the recent findings. Overexpression of different proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (FGF-2) or placental growth factors (PlGF) have been found in plasma or lung biopsies of COVID-19 patients. Finally, SARS-CoV-2 infection induces an emergency myelopoiesis associated to deregulated immunity and mobilization of endothelial progenitor cells, leading to features of acquired hematological malignancies or cardiovascular disease, which are discussed in this review. Altogether, this review will try to elucidate the pathophysiology of thrombotic complications, pathological angiogenesis and EC dysfunction, allowing better insight in new targets and antithrombotic protocols to better address vascular system dysfunction. Since treating SARS-CoV-2 infection and its potential long-term effects involves targeting the vascular compartment and/or mobilization of immature immune cells, we propose to define COVID-19 and its complications as a systemic vascular acquired hemopathy.


Asunto(s)
COVID-19/metabolismo , Mielopoyesis , Neovascularización Patológica/metabolismo , Síndrome de Dificultad Respiratoria/metabolismo , SARS-CoV-2/metabolismo , Trombosis/metabolismo , COVID-19/patología , COVID-19/terapia , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/virología , Productos de Degradación de Fibrina-Fibrinógeno/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Proteínas de la Membrana/metabolismo , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Neovascularización Patológica/virología , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Trombosis/patología , Trombosis/terapia , Trombosis/virología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de von Willebrand/metabolismo
14.
Angiogenesis ; 24(2): 197-198, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34014449

RESUMEN

Vascular endothelial cells are highly plastic and show great phenotypic heterogeneity. In recent years, emerging technologies have identified a range of novel endothelial phenotypes and functions. In this Special Issue of Angiogenesis, we present a series of papers from leading experts in the field, highlighting the heterogeneity and plasticity of endothelial cells in health and disease.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Humanos , Publicaciones Periódicas como Asunto
15.
Angiogenesis ; 24(3): 695-714, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33983539

RESUMEN

Sprouting angiogenesis is key to many pathophysiological conditions, and is strongly regulated by vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we report that the early endosomal GTPase Rab5C and its activator RIN2 prevent lysosomal routing and degradation of VEGF-bound, internalized VEGFR2 in human endothelial cells. Stabilization of endosomal VEGFR2 levels by RIN2/Rab5C is crucial for VEGF signaling through the ERK and PI3-K pathways, the expression of immediate VEGF target genes, as well as specification of angiogenic 'tip' and 'stalk' cell phenotypes and cell sprouting. Using overexpression of Rab mutants, knockdown and CRISPR/Cas9-mediated gene editing, and live-cell imaging in zebrafish, we further show that endosomal stabilization of VEGFR2 levels is required for developmental angiogenesis in vivo. In contrast, the premature degradation of internalized VEGFR2 disrupts VEGF signaling, gene expression, and tip cell formation and migration. Thus, an endosomal feedforward mechanism maintains receptor signaling by preventing lysosomal degradation, which is directly linked to the induction of target genes and cell fate in collectively migrating cells during morphogenesis.


Asunto(s)
Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica , Proteolisis , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/metabolismo , Proteínas de Unión al GTP rab5/metabolismo , Animales , Proteínas Portadoras/genética , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Pez Cebra/genética , Proteínas de Unión al GTP rab5/genética
16.
Angiogenesis ; 24(3): 677-693, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33770321

RESUMEN

Endothelial barrier disruption and vascular leak importantly contribute to organ dysfunction and mortality during inflammatory conditions like sepsis and acute respiratory distress syndrome. We identified the kinase Arg/Abl2 as a mediator of endothelial barrier disruption, but the role of Arg in endothelial monolayer regulation and its relevance in vivo remain poorly understood. Here we show that depletion of Arg in endothelial cells results in the activation of both RhoA and Rac1, increased cell spreading and elongation, redistribution of integrin-dependent cell-matrix adhesions to the cell periphery, and improved adhesion to the extracellular matrix. We further show that Arg is activated in the endothelium during inflammation, both in murine lungs exposed to barrier-disruptive agents, and in pulmonary microvessels of septic patients. Importantly, Arg-depleted endothelial cells were less sensitive to barrier-disruptive agents. Despite the formation of F-actin stress fibers and myosin light chain phosphorylation, Arg depletion diminished adherens junction disruption and intercellular gap formation, by reducing the disassembly of cell-matrix adhesions and cell retraction. In vivo, genetic deletion of Arg diminished vascular leak in the skin and lungs, in the presence of a normal immune response. Together, our data indicate that Arg is a central and non-redundant regulator of endothelial barrier integrity, which contributes to cell retraction and gap formation by increasing the dynamics of adherens junctions and cell-matrix adhesions in a Rho GTPase-dependent fashion. Therapeutic inhibition of Arg may provide a suitable strategy for the treatment of a variety of clinical conditions characterized by vascular leak.


Asunto(s)
Matriz Extracelular/metabolismo , Uniones Comunicantes/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Proteínas Tirosina Quinasas/metabolismo , Alveolos Pulmonares/enzimología , Animales , Adhesión Celular/genética , Activación Enzimática , Matriz Extracelular/genética , Uniones Comunicantes/genética , Humanos , Inflamación/enzimología , Inflamación/genética , Ratones , Ratones Noqueados , Proteínas Tirosina Quinasas/genética
17.
Trends Biochem Sci ; 46(2): 124-137, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33020011

RESUMEN

Integrins are transmembrane receptors that transduce biochemical and mechanical signals across the plasma membrane and promote cell adhesion and migration. In addition, integrin adhesion complexes are functionally and structurally linked to components of the intracellular trafficking machinery and accumulating data now reveal that they are key regulators of endocytosis and exocytosis in a variety of cell types. Here, we highlight recent insights into integrin control of intracellular trafficking in processes such as degranulation, mechanotransduction, cell-cell communication, antibody production, virus entry, Toll-like receptor signaling, autophagy, and phagocytosis, as well as the release and uptake of extracellular vesicles. We discuss the underlying molecular mechanisms and the implications for a range of pathophysiological contexts, including hemostasis, immunity, tissue repair, cancer, and viral infection.


Asunto(s)
Integrinas , Mecanotransducción Celular , Adhesión Celular , Membrana Celular , Endocitosis
18.
J Extracell Vesicles ; 9(1): 1764213, 2020 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-32944168

RESUMEN

Major efforts are made to characterize the presence of microRNA (miRNA) and messenger RNA in blood plasma to discover novel disease-associated biomarkers. MiRNAs in plasma are associated to several types of macromolecular structures, including extracellular vesicles (EV), lipoprotein particles (LPP) and ribonucleoprotein particles (RNP). RNAs in these complexes are recovered at variable efficiency by commonly used EV- and RNA isolation methods, which causes biases and inconsistencies in miRNA quantitation. Besides miRNAs, various other non-coding RNA species are contained in EV and present within the pool of plasma extracellular RNA. Members of the Y-RNA family have been detected in EV from various cell types and are among the most abundant non-coding RNA types in plasma. We previously showed that shuttling of full-length Y-RNA into EV released by immune cells is modulated by microbial stimulation. This indicated that Y-RNAs could contribute to the functional properties of EV in immune cell communication and that EV-associated Y-RNAs could have biomarker potential in immune-related diseases. Here, we investigated which macromolecular structures in plasma contain full length Y-RNA and whether the levels of three Y-RNA subtypes in plasma (Y1, Y3 and Y4) change during systemic inflammation. Our data indicate that the majority of full length Y-RNA in plasma is stably associated to EV. Moreover, we discovered that EV from different blood-related cell types contain cell-type-specific Y-RNA subtype ratios. Using a human model for systemic inflammation, we show that the neutrophil-specific Y4/Y3 ratios and PBMC-specific Y3/Y1 ratios were significantly altered after induction of inflammation. The plasma Y-RNA ratios strongly correlated with the number and type of immune cells during systemic inflammation. Cell-type-specific "Y-RNA signatures" in plasma EV can be determined without prior enrichment for EV, and may be further explored as simple and fast test for diagnosis of inflammatory responses or other immune-related diseases.

20.
Matrix Biol ; 93: 60-78, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32450218

RESUMEN

Collective cell behaviour during embryogenesis and tissue repair requires the coordination of intercellular junctions, cytoskeleton-dependent shape changes controlled by Rho GTPases, and integrin-dependent cell-matrix adhesion. Many different integrins are simultaneously expressed during wound healing, embryonic development, and sprouting angiogenesis, suggesting that there is extensive integrin/integrin cross-talk to regulate cell behaviour. Here, we show that fibronectin-binding ß1 and ß3 integrins do not act synergistically, but rather antagonize each other during collective cell processes in neuro-epithelial cells, placental trophoblasts, and endothelial cells. Reciprocal ß1/ß3 antagonism controls RhoA activity in a kindlin-2-dependent manner, balancing cell spreading, contractility, and intercellular adhesion. In this way, reciprocal ß1/ß3 antagonism controls cell cohesion and cellular plasticity to switch between extreme and opposing states, including epithelial versus mesenchymal-like phenotypes and collective versus individual cell migration. We propose that integrin/integrin antagonism is a universal mechanism to effectuate social cellular interactions, important for tissue morphogenesis, endothelial barrier function, trophoblast invasion, and sprouting angiogenesis.


Asunto(s)
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células Neuroepiteliales/citología , Proteína de Unión al GTP rhoA/metabolismo , Movimiento Celular , Plasticidad de la Célula , Citoplasma/metabolismo , Desarrollo Embrionario , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Células Neuroepiteliales/metabolismo , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA