Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Cell Biochem Funct ; 42(2): e3957, 2024 Mar.
Article En | MEDLINE | ID: mdl-38468129

Cerebral ischemic damage is prevalent and the second highest cause of death globally across patient populations; it is as a substantial reason of morbidity and mortality. Mesenchymal stromal cells (MSCs) have garnered significant interest as a potential treatment for cerebral ischemic damage, as shown in ischemic stroke, because of their potent intrinsic features, which include self-regeneration, immunomodulation, and multi-potency. Additionally, MSCs are easily obtained, isolated, and cultured. Despite this, there are a number of obstacles that hinder the effectiveness of MSC-based treatment, such as adverse microenvironmental conditions both in vivo and in vitro. To overcome these obstacles, the naïve MSC has undergone a number of modification processes to enhance its innate therapeutic qualities. Genetic modification and preconditioning modification (with medications, growth factors, and other substances) are the two main categories into which these modification techniques can be separated. This field has advanced significantly and is still attracting attention and innovation. We examine these cutting-edge methods for preserving and even improving the natural biological functions and therapeutic potential of MSCs in relation to adhesion, migration, homing to the target site, survival, and delayed premature senescence. We address the use of genetically altered MSC in stroke-induced damage. Future strategies for improving the therapeutic result and addressing the difficulties associated with MSC modification are also discussed.


Brain Ischemia , Ischemic Preconditioning , Ischemic Stroke , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Stroke , Humans , Ischemic Stroke/metabolism , Brain Ischemia/therapy , Brain Ischemia/metabolism , Stroke/therapy , Stroke/metabolism , Ischemic Preconditioning/methods , Mesenchymal Stem Cells/metabolism
2.
Cell Biochem Funct ; 42(2): e3935, 2024 Mar.
Article En | MEDLINE | ID: mdl-38379260

50% of cases of infertility are caused by male factor, which acquired or congenital problems may bring on. Male infertility can be caused by oligospermia and asthenozoospermia, which are common. Since the same mutations that cause azoospermia in some people also cause oligozoospermia in others, oligozoospermia may be thought of as a less severe form of azoospermia. Studies have demonstrated telomere length, catalase activity, super oxide dismutase (SOD), and DNA fragmentation can be influential factors for male infertility. The amount of apoptosis, oxidative stress factors, telomere length, and DNA fragmentation were some aspects of healthy sperm that we chose to look into in this study and compare to oligospermia individuals. Oligospermia patients (n = 24) and fertile men (n = 27) semen samples were collected, and the apoptosis rate of sperms in both groups was analyzed (Flow cytometry). Also, gene expression of apoptotic and antiapoptotic markers and telomere length were examined (real-time polymerase chain reaction). The sperm DNA fragmentation kit was used to determine DNA fragmentation and to evaluate catalase and SOD activity; the specific kits and methods were utilized. Higher expression levels of caspase3 (p = .0042), caspase8 (p = .0145), caspase9 (p = .0275), and BAX (p = .0202) mRNA were observed in patients who had oligospermia. In contrast, lower mRNA expression of BCL-2 (p = .0009) was detected in this group. In addition, telomere length was decreased in the oligospermia group (p < .0001) compared to the health group. Moreover, the frequency of apoptosis is induced in patients (p = .0026). The catalase activity is low (p = .0008), but the SOD activity is high (p = .0015) in the patient group. As a result of our findings, we may list the sperm cell apoptosis rate, telomere length, the degree of sperm DNA fragmentation, and lastly, the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma among the principal diagnostic characteristics for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Azoospermia , Infertility, Male , Oligospermia , Humans , Male , Oligospermia/genetics , Oligospermia/metabolism , Reactive Oxygen Species/metabolism , Catalase/genetics , Catalase/metabolism , Azoospermia/metabolism , Semen/metabolism , Spermatozoa/metabolism , Infertility, Male/genetics , Infertility, Male/diagnosis , Infertility, Male/metabolism , Antioxidants/metabolism , DNA Fragmentation , Apoptosis , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Telomere/metabolism , RNA, Messenger/metabolism
3.
Article En | MEDLINE | ID: mdl-38243988

Stem cells hold great promise as novel and encouraging therapeutic tools in the treatment of degenerative disorders due to their differentiation potential while maintaining the capability to self-renewal and their unlimited ability to divide and regenerate tissue. A variety of different types of stem cells can be used in cell therapy. Among these, mesenchymal stem cell (MSC) therapy has gradually established itself as a novel method for treating damaged tissues that need restoration and renewal. Male infertility is an important health challenge affecting approximately 8-12% of people around the world. This abnormality can be caused by primary, congenital, acquired, or idiopathic reasons. Men with no sperm in their semen have a condition called azoospermia, caused by non-obstructive (NOA) causes and post-testicular obstructive causes. Accumulating evidence has shown that various types of MSCs can differentiate into germ cells and improve spermatogenesis in the seminiferous tubules of animal models. In addition, recent studies in animal models have exhibited that extracellular vesicles derived from MSCs can stimulate the progression of spermatogenesis and germ cell regeneration in the recipient testes. In spite of the fact that various improvements have been made in the treatment of azoospermia disorder in animal models by MSC or their extracellular vesicles, no clinical trials have been carried out to test their therapeutic effect on the NOA. In this review, we summarize the potential of MSC transplantation for treating infertility caused by NOA.

4.
Cell Biochem Funct ; 42(1): e3908, 2024 Jan.
Article En | MEDLINE | ID: mdl-38269498

Preeclampsia (PE) is a major gestational disorder that causes both long- and short-term damage to both the mother and the fetus. Endometrium decidualization and the formation of the placenta are orchestrated by mesenchymal stem cells (MSCs). MSCs obtained from patients with PE exhibit an elevated rate of aging and apoptosis, which impairs the interplay between MSCs and endothelium, trophoblast, and immune cells in the placenta, accelerating the onset of PE. Preclinical and clinical evidence imply that the MSC-based therapy approach for PE is prospective. Importantly, as a novel cell-free approach, MSC-derived exosomes can improve symptoms and maternal-fetal survival in PE models by raising cell metabolism, encouraging angiogenesis balance, and regulating immune responses. Even following allogeneic administration, the likelihood of immune rejection is very limited as a result of the small quantity of exosome membrane-bound proteins. Furthermore, because exosomes do not expand, developing tumors is not probable. As a result, MSC-derived exosomes show superiority over MSCs in terms of safety. For the first time, we outline the properties of MSC-exosomes and highlight their functions and potential as a new paradigm for PE therapy in this review.


Exosomes , Mesenchymal Stem Cells , Pre-Eclampsia , Female , Pregnancy , Humans , Pre-Eclampsia/therapy , Prospective Studies , Aging , Membrane Proteins
5.
Pathol Res Pract ; 254: 155135, 2024 Feb.
Article En | MEDLINE | ID: mdl-38295461

The term acute respiratory disease encompasses a wide range of acute lung diseases, which in recent years have been ranked among the top three deadly diseases in the world. Since conventional treatment methods, including the use of anti-inflammatory drugs, have had no significant effect on the treatment process of these diseases, the attention of the medical community has been drawn to alternative methods. Mesenchymal stem cells (MSC) are multipotential stem/progenitor cells that have extensive immunomodulatory and anti-inflammatory properties and also play a critical role in the microenvironment of injured tissue. MSC secretomes (containing large extracellular vesicles, microvesicles, and exosomes) are a newly introduced option for cell-free therapies that can circumvent the hurdles of cell-based therapies while maintaining the therapeutic role of MSC themselves. The therapeutic capabilities of MSCs have been showed in many acute respiratory diseases, including chronic respiratory disease (CRD), novel coronavirus 2019 (COVID -19), and pneumonia. MSCs offer novel therapeutic approaches for chronic and acute lung diseases due to their anti-inflammatory and immunomodulatory properties. In this review, we summarize the current evidence on the efficacy and safety of MSC-derived products in preclinical models of lung diseases and highlight the biologically active compounds present in the MSC secretome and their mechanisms involved in anti-inflammatory activity and tissue regeneration.


Exosomes , Lung Diseases , Mesenchymal Stem Cells , RNA, Long Noncoding , Humans , Anti-Inflammatory Agents
6.
BMC Endocr Disord ; 23(1): 275, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38102636

BACKGROUND: Several studies have highlighted the possible positive effects of soluble receptor for advanced glycation end products (sRAGE) against obesity. However, due to their inconsistent results, this systematic review and meta-analysis aimed to quantitatively evaluate and critically review the results of studies evaluating the relationship between sRAGE with obesity among adult population. METHODS: In the systematic search, the eligibility criteria were as follows: studies conducted with a cross-sectional design, included apparently healthy adults, adults with obesity, or obesity-related disorders, aged over 18 years, and evaluated the association between general or central obesity indices with sRAGE. RESULTS: Our systematic search in electronic databases, including PubMed, Scopus, and Embase up to 26 October, 2023 yielded a total of 21,612 articles. After removing duplicates, screening the titles and abstracts, and reading the full texts, 13 manuscripts were included in the final meta-analysis. According to our results, those at the highest category of circulating sRAGE concentration with median values of 934.92 pg/ml of sRAGE, had 1.9 kg/m2 lower body mass index (BMI) (WMD: -1.927; CI: -2.868, -0.986; P < 0.001) compared with those at the lowest category of sRAGE concentration with median values of 481.88 pg/ml. Also, being at the highest sRAGE category with the median values of 1302.3 pg/ml sRAGE, was accompanied with near 6 cm lower waist circumference (WC) (WMD: -5.602; CI: -8.820, -2.383; P < 0.001 with 86.4% heterogeneity of I2) compared with those at the lowest category of sRAGE concentration with median values of 500.525 pg/ml. Individuals with obesity had significantly lower circulating sRAGE concentrations (WMD: -135.105; CI: -256.491, -13.72; P = 0.029; with 79.5% heterogeneity of I2). According to the subgrouping and meta-regression results, country and baseline BMI were possible heterogeneity sources. According to Begg's and Egger's tests and funnel plots results, there was no publication bias. CONCLUSION: According to our results, higher circulating sRAGE concentrations was associated with lower BMI and WC among apparently healthy adults. Further randomized clinical trials are warranted for possible identification of causal associations.


Glycation End Products, Advanced , Obesity , Adult , Humans , Middle Aged , Receptor for Advanced Glycation End Products , Cross-Sectional Studies , Body Mass Index , Weight Loss
7.
Int J Environ Health Res ; : 1-10, 2023 Nov 15.
Article En | MEDLINE | ID: mdl-37967266

The relation of exposure to arsenic in drinking water during pregnancy to the risk of preterm birth (PTB) was contradictory. This meta-analysis aimed to examine the association between drinking water arsenic and PTB. A systematic search in PubMed and Scopus was performed to achieve all relevant studies. Odds ratios (OR) and 95% confidence intervals (CI) were used to pool data using the random-effect models. Overall, 11 studies with a total sample size of 3,404,189 participants were included in the meta-analysis. Arsenic exposure through drinking water during pregnancy was related to an increased risk of PTB (OR = 1.06; 95%CI = 1.01-1.10 for highest versus lowest category of arsenic), with significant heterogeneity across the studies (I2 = 84.8%, P = 0.001). This finding was supported by cohort studies (OR = 1.05; 95%CI = 1.01-1.10). This meta-analysis proposes that higher arsenic exposure in drinking water may be a risk factor for PTB.

8.
J Reprod Immunol ; 160: 104159, 2023 12.
Article En | MEDLINE | ID: mdl-37913711

Oligospermia and asthenozoospermia, both frequent, can lead to male infertility. Oligospermia might be viewed as a milder form of azoospermia because the same mutations that produce azoospermia in some individuals also create oligospermia in other individuals. In this, we looked at different characteristics of oligospermia men, counting the level of apoptosis and a few related apoptotic and oxidative stress components, and compared them to solid controls. In this study, semen samples from healthy fertile men (n = 35) and oligospermia (n = 35) were collected, and sperm death rates in both groups were examined using flow cytometry. Also, gene expression of apoptotic and anti-apoptotic markers and miR-221 were investigated (Real-Time PCR). Moreover, for the evaluation of catalase and SOD activity and anti-inflammatory cytokines, including IL-10 and TGF-ß, the specific ELISA kits and procedures were applied. As a result, higher gene and protein expression levels of PTEN, P27, and P57 were observed in patients with oligospermia. In contrast, lower mRNA expression of AKT and miR-221 was detected in this group. In addition, IL-10, TGF-ß, and catalase activity were suppressed in the oligospermia group compared with healthy men samples. Moreover, the frequency of apoptosis of sperm cells is induced in patients. In conclusion, apoptosis-related markers, PTEN, and the measurement of significant and efficient oxidative stress markers like SOD and catalase in semen plasma could be considered as the critical diagnostic markers for oligospermia. Future studies will be better able to treat oligospermia by showing whether these indicators are rising or falling.


Azoospermia , MicroRNAs , Oligospermia , Humans , Male , Oligospermia/genetics , Azoospermia/genetics , Azoospermia/diagnosis , Azoospermia/metabolism , Catalase/genetics , Catalase/metabolism , Interleukin-10/metabolism , Semen/metabolism , Spermatozoa/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/metabolism
10.
Pathol Res Pract ; 248: 154701, 2023 Aug.
Article En | MEDLINE | ID: mdl-37542859

Understanding the function and mode of operation of microRNAs (miRNAs) in cancer is of growing interest. The short non-coding RNAs known as miRNAs, which target mRNA in multicellular organisms, are described as controlling essential cellular processes. The miR-181 family and miR-633 are well-known miRNAs that play a key role in the development and metastasis of tumor cells. They may facilitate either tumor-suppressive or oncogenic function in malignant cells, according to mounting evidence. Metastatic cells that are closely linked to cancer cell migration, invasion, and angiogenesis can be identified by abnormal levels of miR-181 and miR-633. Numerous studies have demonstrated their capacity to control drug resistance, cell growth, apoptosis, and the epithelial-mesenchymal transition (EMT) and metastasis process. Interestingly, the levels of miR-181 and miR-633 and their potential target genes in the basic cellular process can vary depending on the type of cancer cells and their gene expression profile. Such miRNAs' interactions with other non-coding RNAs such as long non-coding RNAs and circular RNAs can influence tumor behaviors. Herein, we concentrated on the multifaceted roles of miR-181 and miR-633 and potential targets in human tumorigenesis, ranging from cell growth and metastasis to drug resistance.


MicroRNAs , Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Cell Proliferation , Carcinogenesis/genetics , RNA, Messenger , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , Cell Line, Tumor
11.
Biotechnol Prog ; 39(6): e3383, 2023.
Article En | MEDLINE | ID: mdl-37642165

Altered expression of multiple miRNAs was found to be extensively involved in the pathogenesis of different neurological disorders including Alzheimer's disease, Parkinson's disease, stroke, epilepsy, multiple sclerosis, amyotrophic lateral sclerosis, and Huntington's disease. One of the biggest concerns within gene-based therapy is the delivery of the therapeutic microRNAs to the intended place, which is obligated to surpass the biological barriers without undergoing degradation in the bloodstream or renal excretion. Hence, the delivery of modified and unmodified miRNA molecules using excellent vehicles is required. In this light, mesenchymal stem cells (MSCs) have attracted increasing attention. The MSCs can be genetically modified to express or overexpress a particular microRNA aimed with promote neurogenesis and neuroprotection. The current review has focused on the therapeutic capabilities of microRNAs-overexpressing MSCs to ameliorate functional deficits in neurological conditions.


Mesenchymal Stem Cells , MicroRNAs , Nervous System Diseases , Parkinson Disease , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Nervous System Diseases/genetics , Nervous System Diseases/therapy , Nervous System Diseases/metabolism , Mesenchymal Stem Cells/metabolism , Parkinson Disease/therapy , Neurogenesis
12.
Anat Cell Biol ; 56(4): 421-427, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37649128

Bladder exstrophy is a rare congenital condition of the pelvis, bladder, and lower abdomen that opens the bladder against the abdominal wall, produces aberrant growth, short penis, upward curvature during erection, wide penis, and undescended testes. Exstrophy affects 1/30,000 newborns. The bladder opens against the abdominal wall in bladder exstrophy, a rare genitourinary condition. This study is vital to provide appropriate therapy choices as a basis to improve patient outcomes. This study may explain bladder exstrophy and provide treatment. Epispadias, secretory placenta, cloacal exstrophy, and other embryonic abnormalities comprise the exstrophy-spades complex. The mesenchymal layer does not migrate from the ectoderm and endoderm layers in the first trimester, affecting the cloacal membrane. Embryological problems define the exstrophy-aspidistra complex, which resembles epimedium, classic bladder, cloacal exstrophy, and other diseases. Urogenital ventral body wall anomalies expose the bladder mucosa, causing bladder exstrophy. Genetic mutations in the Hedgehog cascade pathway, Wnt signal, FGF, BMP4, Alx4, Gli3, and ISL1 cause ventral body wall closure and urinary bladder failure. External factors such as high maternal age, smoking moms, and high maternal body mass index have also been associated to bladder exstrophy. Valproic acid increases bladder exstrophy risk; chemicals and pollutants during pregnancy may increase bladder exstrophy risk. Bladder exstrophy has no identified cause despite these risk factors. Exstrophy reconstruction seals the bladder, improves bowel function, reconstructs the vaginal region, and restores urination.

13.
Hum Cell ; 36(5): 1604-1619, 2023 Sep.
Article En | MEDLINE | ID: mdl-37407748

Women's infertility impacts the quality of life of both patients and couples and has multifaceted dimensions that increase the number of challenges associated with female infertility and how to face them. Female reproductive disorders, such as premature ovarian failure (POF), endometriosis, Asherman syndrome (AS), polycystic ovary syndrome (PCOS), and preeclampsia, can stimulate infertility. In the last decade, translational medicine has advanced, and scientists are focusing on infertility therapy with innovative attitudes. Recent investigations have suggested that stem cell treatments could be safe and effective. Stem cell therapy has established a novel method for treating women's infertility as part of a regeneration approach. The chief properties and potential of mesenchymal stem/stromal cells (MSCs) in the future of women's infertility should be considered by researchers. Due to their high abundance, great ability to self-renew, and high differentiation capacity, as well as less ethical concerns, MSC-based therapy has been found to be an effective alternative strategy to the previous methods for treating female infertility, such as intrauterine insemination, in vitro fertilization, medicines, and surgical procedures. These types of stem cells exert their beneficial role by releasing active mediators, promoting cell homing, and contributing to immune modulation. Here we first provide an overview of MSCs and their crucial roles in both biological and immunological processes. The next large chapter covers current preclinical and clinical studies on the application of MSCs to treat various female reproductive disorders. Finally, we deliberate on the extant challenges that hinder the application of MSCs in female infertility and suggest plausible measures to alleviate these impediments.


Infertility, Female , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Pregnancy , Humans , Female , Infertility, Female/therapy , Quality of Life , Reproductive Techniques, Assisted , Fertilization in Vitro/methods
14.
Stem Cell Rev Rep ; 19(7): 2073-2093, 2023 10.
Article En | MEDLINE | ID: mdl-37440145

Infertility has become one of the most common issues worldwide, which has negatively affected society and infertile couples. Meanwhile, male infertility is responsible for about 50% of infertility. Accordingly, a great number of researchers have focused on its treatment during the last few years; however, current therapies such as assisted reproductive technology (ART) are not effective enough in treating male infertility. Because of their self-renewal and differentiation capabilities and unlimited sources, stem cells have recently raised great hope in the treatment of reproductive system disorders. Stem cells are undifferentiated cells that can induce different numbers of specific cells, such as male and female gametes, demonstrating their potential application in the treatment of infertility. The present review aimed at identifying the causes and potential factors that influence male fertility. Besides, we highlighted the recent studies that investigated the efficiency of stem cells such as spermatogonial stem cells (SSCs), embryonic stem cells (ESCs), very small embryonic-like stem cells (VSELs), induced pluripotent stem cells (iPSCs), and mesenchymal stem cells (MSCs) in the treatment of various types of male infertility.


Induced Pluripotent Stem Cells , Infertility, Male , Male , Humans , Female , Infertility, Male/therapy , Infertility, Male/metabolism , Embryonic Stem Cells , Stem Cell Transplantation , Cell Differentiation
15.
Curr Med Chem ; 2023 Jul 24.
Article En | MEDLINE | ID: mdl-37491852

INTRODUCTION: Although cancer treatment with cisplatin is effective, dose-dependent adverse effects such as ototoxicity occurs often, which limits its clinical use. The use of resveratrol may alleviate the cisplatin-induced ototoxic effects. This study is aimed to review the potential otoprotective effects of resveratrol against cisplatin-induced ototoxicity. METHOD: According to the PRISMA guideline, a systematic search was accomplished to identify all relevant scientific papers on "the role of resveratrol against cisplatin-induced ototoxicity" in different electronic databases up to May 2021. Fifty-five articles were screened based on a pre-defined set of inclusion and exclusion criteria. Eight eligible studies were finally included in the current systematic review. The in-vitro findings revealed that cisplatin administration significantly decreased the HEI-OC1 cell viability compared to the untreated cells; however, resveratrol co-treatment (in a dose-dependent manner) could protect HEI-OC1 cells against cisplatin-induced decrease in cell viability. RESULTS: Furthermore, the in-vivo finding showed a decreased value of DPOAE, and increased values of ABR threshold, ABR-I, ABR-IV, and ABR I-IV interval in cisplatin-treated animals; in contrast, resveratrol co-administration demonstrated an opposite pattern on these parameters. CONCLUSION: Thus, it can be mentioned that resveratrol co-treatment alleviates cisplatin-induced ototoxicity. Mechanically, resveratrol exerts its otoprotective effects through various mechanisms such as anti-oxidant, anti-apoptosis, and anti-inflammatory.

16.
Pathol Res Pract ; 248: 154705, 2023 Aug.
Article En | MEDLINE | ID: mdl-37499519

microRNAs (miRNAs) play a crucial role in various biological processes, including immune system regulation, such as cell proliferation, tolerance (central and peripheral), and T helper cell development. Dysregulation of miRNA expression and activity can disrupt immune responses and increase susceptibility to neuroimmune disorders. Conversely, miRNAs have been shown to have a protective role in modulating immune responses and preventing autoimmunity. Specifically, reducing the expression of miRNA-128 (miR-128) in an Alzheimer's disease (AD) mouse model has been found to improve cognitive deficits and reduce neuropathology. This comprehensive review focuses on the significance of miR-128 in the pathogenesis of neuroautoimmune disorders, including multiple sclerosis (MS), AD, Parkinson's disease (PD), Huntington's disease (HD), epilepsy, as well as other immune-mediated diseases such as inflammatory bowel disease (IBD) and rheumatoid arthritis (RA). Additionally, we present compelling evidence supporting the potential use of miR-128 as a diagnostic or therapeutic biomarker for neuroimmune disorders. Collectively, the available literature suggests that targeting miR-128 could be a promising strategy to alleviate the behavioral symptoms associated with neuroimmune diseases. Furthermore, further research in this area may uncover new insights into the molecular mechanisms underlying these disorders and potentially lead to the development of novel therapeutic approaches.


Autoimmune Diseases , Inflammatory Bowel Diseases , MicroRNAs , Mice , Animals , Autoimmune Diseases/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Autoimmunity/genetics , Inflammatory Bowel Diseases/genetics , Biomarkers
17.
Pathol Res Pract ; 248: 154575, 2023 Aug.
Article En | MEDLINE | ID: mdl-37285734

Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.


Hydrogels , Mesenchymal Stem Cells , Humans , Wound Healing/physiology , Cell Differentiation , Mesenchymal Stem Cells/metabolism
18.
Article En | MEDLINE | ID: mdl-36923735

Background: Urtica dioica (UD), as a natural antioxidant, has positive effects on oocyte maturation. This study aimed to investigate the effects of hydro-alcoholic UD extract and retinoic acid on follicular development in an in vitro fertilization (IVF) condition. Methods: A total of 40 female Wistar rats were randomly divided into 5 groups: group 1 received normal saline, group 2 was given 25 mg/kg retinoic acid, group 3 was administered with 100 mg/kg UD extract, group 4 was treated with retinoic acid plus UD extract, and group 5 received 10 mg/kg olive oil. The histomorphometric parameters were analyzed, including the number of follicles, follicular atrophy, fertilized oocytes, 2-cell embryos, dead embryos, and blastocysts. Results: Retinoic acid caused a significant increase in the primary, preantral, and atretic follicles and a substantial decrease in the corpus luteum compared with the control group (p<0.001). The number of preantral, antral follicles, and corpus luteum was significantly higher in group 3 compared with group 1 (p<0.001). Moreover, coadministration of UD plus retinoic acid (group 4) significantly reduced the atretic follicles (p<0.05). Conclusion: Based on the results, UD herbal extract, as a natural antioxidant agent, could reduce the adverse effects of retinoic acid on oocyte maturation in an IVF condition.

19.
Stem Cell Res Ther ; 14(1): 21, 2023 02 08.
Article En | MEDLINE | ID: mdl-36750912

In women, breast cancer (BC) is the second most frequently diagnosed cancer and the leading cause of cancer death. Mesenchymal stem cells (MSCs) are a subgroup of heterogeneous non-hematopoietic fibroblast-like cells that have the ability to differentiate into multiple cell types. Recent studies stated that MSCs can migrate into the tumor sites and exert various effect on tumor growth and development. Multiple researches have demonstrated that MSCs can favor tumor growth, while other groups have indicated that MSCs inhibit tumor development. Emerging evidences showed exosomes (Exo) as a new mechanism of cell communication which are essential for the crosstalk between MSCs and BC cells. MSC-derived Exo (MSCs-Exo) could mimic the numerous effects on the proliferation, metastasis, and drug response through carrying a wide scale of molecules, such as proteins, lipids, messenger RNAs, and microRNAs to BC cells. Consequently, in the present literature, we summarized the biogenesis and cargo of Exo and reviewed the role of MSCs-Exo in development of BC.


Breast Neoplasms , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , Exosomes/metabolism , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism
20.
Environ Sci Pollut Res Int ; 30(8): 19592-19601, 2023 Feb.
Article En | MEDLINE | ID: mdl-36645600

Exposure to polycyclic aromatic hydrocarbons (PAHs) during pregnancy has been associated with many adverse child health. However, the evidence on such associations with child brain development was not reviewed systemically. Therefore, in this study, we systemically reviewed the observational studies on prenatal exposure to PAHs and childhood intelligence quotient (IQ). The Meta-analyses Of Observational Studies in Epidemiology (MOOSE) guidelines were applied to perform this review. We systematically searched Scopus, PubMed, and Web of Science for all relevant articles published in English until 15 October 2022. The quality of retrieved studies was evaluated based on the Gascon et al. method. We retrieved a total of 351 citations through the initial search, of which an overall of six articles ([Formula: see text] participants) were included in our final review. The quality assessment indicated that four studies had excellent and two studies had good quality. Three reviewed studies reported a significant negative association between prenatal exposure to PAHs and children's IQ. One study reported that exposure to PAHs combined with material hardship was associated with lower child IQ and one study indicated lower child IQ through lower LINE1 DNA methylation-related maternal exposure to PAHs. However, another study did not observe a significant association between prenatal PAH exposure and child IQ. Overall, our review indicated that exposure to PAHs during pregnancy has an adverse impact on childhood IQ.


Polycyclic Aromatic Hydrocarbons , Prenatal Exposure Delayed Effects , Pregnancy , Female , Child , Humans , Polycyclic Aromatic Hydrocarbons/toxicity , Prenatal Exposure Delayed Effects/epidemiology , Prenatal Exposure Delayed Effects/chemically induced , Intelligence , Maternal Exposure , Child Development , Observational Studies as Topic
...