Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 18(14): 9724-33, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27001346

RESUMEN

The present work is aimed at a deeper investigation of two recently synthesized heteroaromatic fluorophores by means of a computational multilayer approach, integrating quantum mechanics (QM) and molecular mechanics (MM). In particular, dispersion of the title dyes in a polymer matrix is studied in connection with potential applications as photoactive species in luminescent solar concentrators (LSCs). Molecular dynamics simulations, based on accurate QM-derived force fields, reveal increased stiffness of these organic dyes when going from CHCl3 solution to the polymer matrix. QM/MM computations of UV spectra for snapshots extracted from MD simulations show that this different flexibility permits explaining the different spectral shapes obtained experimentally for the two different environments. Moreover, the general spectroscopic trends are reproduced well by static computations employing a polarizable continuum description of environmental effects.

2.
ChemSusChem ; 9(7): 657-61, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26880477

RESUMEN

A new hole-transport material (HTM) based on the 1,3,4-oxadiazole moiety (H1) was prepared through a single-step synthetic pathway starting from commercially available products. Thanks to a deep HOMO level, H1 was used as HTM in CH3 NH3 PbBr3 perovskite solar cells yielding an efficiency of 5.8%. The reference HTM (Spiro-OMeTAD), under the same testing conditions, furnished a lower efficiency of 5.1%. Steady-state and time-resolved photoluminescence of the thin films showed good charge-extraction dynamics for H1 devices. In addition, H1 shows a large thermal stability and completely amorphous behavior (as evaluated by thermal gravimetric analysis and differential scanning calorimetry).


Asunto(s)
Compuestos de Calcio/química , Suministros de Energía Eléctrica , Oxadiazoles/química , Óxidos/química , Energía Solar , Titanio/química , Rastreo Diferencial de Calorimetría , Microscopía Electrónica de Rastreo
3.
Phys Chem Chem Phys ; 17(40): 26710-23, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26395207

RESUMEN

The possibilities offered by organic fluorophores in the preparation of advanced plastic materials have been increased by designing novel alkynylimidazole dyes, featuring different push and pull groups. This new family of fluorescent dyes was synthesized by means of a one-pot sequential bromination-alkynylation of the heteroaromatic core, and their optical properties were investigated in tetrahydrofuran and in poly(methyl methacrylate). An efficient in silico pre-screening scheme was devised as consisting of a step-by-step procedure employing computational methodologies by simulation of electronic spectra within simple vertical energy and more sophisticated vibronic approaches. Such an approach was also extended to efficiently simulate one-photon absorption and emission spectra of the dyes in the polymer environment for their potential application in luminescent solar concentrators. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here provides an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of those fluorescent plastic materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...