Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 499
1.
Methods Mol Biol ; 2798: 161-181, 2024.
Article En | MEDLINE | ID: mdl-38587742

The presence of melatonin in plants, called phytomelatonin, has gained great interest in recent years. The determination of phytomelatonin levels in plant extracts for both physiological and plant foodstuff studies requires sophisticated techniques due to the low endogenous levels of this indolic compound with hormonal nature. This chapter presents the most common and advanced techniques in the determination of phytomelatonin, with special emphasis on the techniques of extraction, cleaning, separation, detection, identification, and quantification. Multiple examples and recommendations are presented for a clear overview of the pros and cons of phytomelatonin determinations in plant tissues, seeds, and fruits, mainly.


Melatonin , Seeds , Fruit , Indoles
2.
J Pineal Res ; 76(1): e12937, 2024 Jan.
Article En | MEDLINE | ID: mdl-38241678

Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.


Germination , Melatonin , Germination/physiology , Melatonin/pharmacology , Seeds , Stress, Physiological , Plants/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant
3.
Trends Plant Sci ; 29(2): 232-248, 2024 02.
Article En | MEDLINE | ID: mdl-38123438

The important role of melatonin in plant growth and metabolism together with recent advances in the potential use of nanomaterials have opened up interesting applications in agriculture. Various nanovehicles have been explored as melatonin carriers in animals, and it is now important to explore their application in plants. Recent findings have substantiated the use of silicon and chitosan nanoparticles (NPs) in targeting melatonin to plant tissues. Although melatonin is an amphipathic molecule, nanocarriers can accelerate its uptake and transport to various plant organs, thereby relieving stress and improving plant shelf-life in the post-harvest stages. We review the scope and biosafety concerns of various nanomaterials to devise novel methods for melatonin application in crops and post-harvest products.


Melatonin , Nanoparticles , Animals , Crops, Agricultural/metabolism , Agriculture
4.
Anaesthesia ; 78(12): 1481-1492, 2023 12.
Article En | MEDLINE | ID: mdl-37880924

Cardiac surgery requiring cardiopulmonary bypass is associated with postoperative acute kidney injury and neurocognitive disorders, including delirium. Intra-operative inflammation and/or impaired tissue perfusion/oxygenation are thought to be contributors to these outcomes. It has been hypothesised that these problems may be ameliorated by the highly selective α2 -agonist, dexmedetomidine. We tested the effects of dexmedetomidine on renal and cerebral microcirculatory tissue perfusion, oxygenation and histology in a clinically relevant ovine model. Sixteen sheep were studied while conscious, after induction of anaesthesia and during 2 h of cardiopulmonary bypass. Eight sheep were allocated randomly to receive an intravenous infusion of dexmedetomidine (0.4-0.8 µg.kg-1 .h-1 ) from induction of anaesthesia to the end of cardiopulmonary bypass, and eight to receive an equivalent volume of matched placebo (0.9% sodium chloride). Commencement of cardiopulmonary bypass decreased renal medullary tissue oxygenation in the placebo group (mean (95%CI) 5.96 (4.24-7.23) to 1.56 (0.84-2.09) kPa, p = 0.001), with similar hypoxic levels observed in the dexmedetomidine group (6.33 (5.33-7.07) to 1.51 (0.33-2.39) kPa, p = 0.002). While no differences in kidney function (i.e. reduced creatinine clearance) were evident, a greater incidence of histological renal tubular injury was observed in sheep receiving dexmedetomidine (7/8 sheep) compared with placebo (2/8 sheep), p = 0.041. Graded on a semi-quantitative scale (0-3), median (IQR [range]) severity of histological renal tubular injury was higher in the dexmedetomidine group compared with placebo (1.5 (1-2 [0-3]) vs. 0 (0-0.3 [0-1]) respectively, p = 0.013). There was no difference in cerebral tissue microglial activation (neuroinflammation) between the groups. Dexmedetomidine did not reduce renal medullary hypoxia or cerebral neuroinflammation in sheep undergoing cardiopulmonary bypass.


Dexmedetomidine , Animals , Brain , Cardiopulmonary Bypass , Dexmedetomidine/therapeutic use , Kidney , Microcirculation , Neuroinflammatory Diseases , Sheep
5.
Ann Nutr Metab ; 79(3): 313-325, 2023.
Article En | MEDLINE | ID: mdl-37271133

INTRODUCTION: Most of the pregnant women do not achieve the recommended dietary intake of vitamins A and E. These vitamins may counteract oxidative stress involved in some adverse perinatal outcomes. We aimed to assess the associations between maternal vitamin A and E at mid-pregnancy with both maternal and fetal outcomes and to identify possible early biomarkers during pregnancy to predict and prevent oxidative stress in the offspring. METHODS: Data on dietary and serum levels of vitamins A and E were collected from 544 pregnant women from the Nutrition in Early Life and Asthma (NELA) study, a prospective mother-child cohort set up in Spain. RESULTS: There were large discrepancies between low dietary vitamin E intake (78% of the mothers) and low serum vitamin E levels (3%) at 24 weeks of gestation. Maternal serum vitamins A and E at mid-pregnancy were associated with higher antioxidant status not only in the mother at this time point (lower hydroperoxides and higher total antioxidant activity [TAA]) but also with the newborn at birth (higher TAA). Gestational diabetes mellitus (GDM) was negatively associated with maternal serum vitamin A (OR: 0.95 CI: 0.91-0.99, p = 0.009) at mid-pregnancy. Nevertheless, we could not detect any association between GDM and oxidative stress parameters. CONCLUSIONS: In conclusion, maternal vitamin A and E serum levels may be used as an early potential biomarker of antioxidant status of the neonate at birth. Control of these vitamins during pregnancy could help avoid morbid conditions in the newborn caused by oxidative stress in GDM pregnancies.


Antioxidants , Diabetes, Gestational , Infant, Newborn , Female , Pregnancy , Humans , Vitamin A , Prospective Studies , Fetal Blood , Vitamins , Vitamin E
6.
Molecules ; 28(7)2023 Apr 03.
Article En | MEDLINE | ID: mdl-37049958

The purpose of this work was to investigate, for the first time to our knowledge, the chemical composition and bioactivity of methanolic extracts (roots, stems, leaves, and flowers) from Cladanthus mixtus (L.) Chevall. that grows wild in northern Morocco (the Tangier-Tetouan-Al Hoceima region). The phenolic and flavonoid contents were determined by spectrophotometer methods, and the composition of derivatized methanolic extracts from C. mixtus using N-O-bis(trimethylsilyl) trifluoroacetamide (BSTFA) was analyzed by gas chromatography-mass spectrometry (GC-MS). The antioxidant activity was carried out by applying the 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH (2,2-diphenyl-1-picrylhydrazyl) tests. The micro-dilution technique was chosen to investigate the antimicrobial activity of methanolic extracts against two bacterial strains and three fungal species. The results showed that the values of total phenolic and flavonoid contents were found to be higher in flower extracts (30.55 ± 0.85 mg of gallic acid equivalents (GAE)/g of dried weight (DW) and 26.00 ±1.34 mg of quercetin equivalents (QE)/g DW, respectively). Other groups of chemical compounds were revealed by GC-MS, such as carbohydrates (27.25-64.87%), fatty acids (1.58-9.08%), organic acids (11.81-18.82%), and amino acids (1.26-7.10%). Root and flower methanolic extracts showed the highest antioxidant activity using ABTS (39.49 mg of Trolox equivalents (TE)/g DW) and DPPH (36.23 mg TE/g DW), respectively. A positive correlation between antioxidant activity and polyphenol and flavonoid amounts was found. Antibacterial tests showed that the best activity was presented by the leaf extract against Staphylococcus aureus (minimum inhibitory concentration (MIC) = minimum bactericidal concentration (MBC) = 20 mg/mL) and Escherichia coli (MIC of 30 mg/mL and MBC of 35 mg/mL). S. aureus was more sensitive to the extracts compared to E. coli. All extracts showed antifungal activity against Trichophyton rubrum, with the best efficacy reported by the flower and leaf extracts (MIC = 1.25 mg/mL and minimum fungicidal concentration (MFC) = 2.5 mg/mL). In general, extracts of C. mixtus appeared less effective against Candida albicans and Aspergillus fumigatus.


Antioxidants , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Staphylococcus aureus , Escherichia coli , Morocco , Flavonoids/pharmacology , Flavonoids/analysis , Phenols/pharmacology , Phenols/analysis , Methanol/pharmacology
7.
Plants (Basel) ; 12(4)2023 Feb 09.
Article En | MEDLINE | ID: mdl-36840129

Melatonin is a multifunctional and ubiquitous molecule. In animals, melatonin is a hormone that is involved in a wide range of physiological activities and is also an excellent antioxidant. In plants, it has been considered a master regulator of multiple physiological processes as well as of hormonal homeostasis. Likewise, it is known for its role as a protective biomolecule and activator of tolerance and resistance against biotic and abiotic stress in plants. Since infections by pathogens such as bacteria, fungi and viruses in crops result in large economic losses, interest has been aroused in determining whether melatonin plays a relevant role in plant defense systems against pathogens in general, and against viruses in particular. Currently, several strategies have been applied to combat infection by pathogens, one of them is the use of eco-friendly chemical compounds that induce systemic resistance. Few studies have addressed the use of melatonin as a biocontrol agent for plant diseases caused by viruses. Exogenous melatonin treatments have been used to reduce the incidence of several virus diseases, reducing symptoms, virus titer, and even eradicating the proliferation of viruses such as Tobacco Mosaic Virus, Apple Stem Grooving Virus, Rice Stripe Virus and Alfalfa Mosaic Virus in tomato, apple, rice and eggplant, respectively. The possibilities of using melatonin as a possible natural virus biocontrol agent are discussed.

8.
Ann Nutr Metab ; 79(2): 228-237, 2023.
Article En | MEDLINE | ID: mdl-36702104

INTRODUCTION: Low dietary intake of vitamin E is a global public health issue. RRR-α-tocopherol (RRR-αT) is the only naturally occurring vitamin E stereoisomer, but the equimolecular mixture of all eight stereoisomers, synthetic vitamin E (S-αT), is commonly consumed. The objective of this study was to evaluate bioavailability and antioxidant activity of RRR-αT versus S-αT, in both mother and fetus, after maternal supplementation during pregnancy. METHODS: Female rats (7 weeks of age) received a modified AIN-93G diet supplemented with 75 IU/kg of RRR-αT (NVE, n = 20) or S-αT (SVE, n = 17). At delivery, the levels of αT, stereoisomer distribution, and antioxidant capacity were analyzed in maternal and fetal plasma. RESULTS: NVE administration significantly increased the proportion of RRR-αT stereoisomer in maternal and fetal plasma. The percentage of RRR-αT increased from 32.76% to 88.33% in maternal plasma, and 35.25% to 97.94% in fetal plasma, in the NVE group compared to SVE. Fetal plasma from the NVE group was found to have higher total antioxidant capacity compared to SVE. Lastly, fetal plasma RRR-αT stereoisomer percentage was positively associated with expression levels of scavenger receptor class B type 1 (SR-B1) in the placenta. CONCLUSIONS: Both natural and synthetic sources of vitamin E showed similar bioavailability. Still, NVE supplementation increased the proportion of RRR-αT and promoted higher antioxidant activity in fetal plasma at birth. Placental SR-B1 might be involved in the stereoselective transfer of RRR-αT stereoisomer across the placenta and may improve αT bioactivity in the fetus.


Vitamin E , alpha-Tocopherol , Female , Animals , Humans , Rats , Pregnancy , Antioxidants , Stereoisomerism , Placenta , Dietary Supplements , Fetus
9.
Metabolites ; 13(1)2023 Jan 02.
Article En | MEDLINE | ID: mdl-36676997

Melatonin dietary supplements are widely consumed worldwide, with developed countries as the largest consumers, with an estimated annual growth rate of approximately 10% until 2027, mainly in developing countries. The wide use of melatonin against sleep disorders and particular problems, such as jet lag, has been added to other applications, such as anti-aging, anti-stress, immune system activation, anticancer, and others, which have triggered its use, normally without a prescription. The chemical industry currently covers 100% of the needs of the melatonin market. Motivated by sectors with more natural consumption habits, a few years ago, the possibility of obtaining melatonin from plants, called phytomelatonin, arose. More recently, the pharmaceutical industry has developed genetically modified microorganisms whose ability to produce biological melatonin in bioreactors has been enhanced. This paper reviews the aspects of the chemical and biological synthesis of melatonin for human consumption, mainly as dietary supplements. The pros and cons of obtaining melatonin from microorganisms and phytomelatonin from plants and algae are analyzed, as well as the advantages of natural melatonin, avoiding unwanted chemical by-products from the chemical synthesis of melatonin. Finally, the economic and quality aspects of these new products, some of which are already marketed, are analyzed.

10.
Plant Cell Physiol ; 63(12): 1764-1786, 2023 Jan 30.
Article En | MEDLINE | ID: mdl-34910215

Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.


Melatonin , Melatonin/pharmacology , Hydrogen Peroxide , Antioxidants , Crops, Agricultural , Plant Growth Regulators/pharmacology
11.
Nutrients ; 14(24)2022 Dec 17.
Article En | MEDLINE | ID: mdl-36558528

Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.


Biological Products , Cognitive Dysfunction , Crocus , Nervous System Diseases , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Nervous System Diseases/drug therapy , Nervous System Diseases/prevention & control
12.
Int J Mol Sci ; 23(23)2022 Dec 02.
Article En | MEDLINE | ID: mdl-36499543

Melatonin is a new plant hormone involved in multiple physiological functions in plants such as germination, photosynthesis, plant growth, flowering, fruiting, and senescence, among others. Its protective role in different stress situations, both biotic and abiotic, has been widely demonstrated. Melatonin regulates several routes in primary and secondary plant metabolism through the up/down-regulation of many enzyme/factor genes. Many of the steps of nitrogen metabolism in plants are also regulated by melatonin and are presented in this review. In addition, the ability of melatonin to enhance nitrogen uptake under nitrogen-excess or nitrogen-low conditions is analyzed. A model that summarizes the distribution of nitrogen compounds, and the osmoregulation and redox network responses mediated by melatonin, are presented. The possibilities of using melatonin in crops for more efficient uptake, the assimilation and metabolization of nitrogen from soil, and the implications for Nitrogen Use Efficiency strategies to improve crop yield are also discussed.


Melatonin , Nitrogen , Nitrogen/metabolism , Melatonin/metabolism , Plant Growth Regulators/metabolism , Crops, Agricultural/metabolism , Photosynthesis
13.
Rev. osteoporos. metab. miner. (Internet) ; 14(4): 107-114, diciembre 2022. tab, graf
Article Es | IBECS | ID: ibc-212408

Objetivo: En enfermos renales, la enfermedad ósea-metabólica, la inflamación sistémica y la malnutrición exacerban el riesgo de calcificación vascular (CV) y la morbimortalidad. Dada la fuerte asociación entre CV y fracturas por fragilidad, el objetivo de este estudio es evaluar la contribución de los mayores determinantes de CV al deterioro óseo en pacientes en diálisis peritoneal (DP).Métodos: En 31 pacientes no diabéticos en DP (>6 meses), se estudiaron marcadores de alteraciones del metabolismo óseo, daño vascular, inflamación y desnutrición, y, su impacto en el deterioro óseo (osteopenia radiológica y/o antecedentes de fractura por fragilidad).Resultados: En estos pacientes, (20 varones y 11 mujeres; edad=54±15 y 60±11 años respectivamente (p=0,24)), la prevalencia de fracturas por fragilidad fue de 5% en hombres y del 27% en mujeres. El deterioro óseo fue mayor en personas de edad avanzada, sexo femenino, índices de Charlson y Kauppila elevados, menor masa muscular y con expansión de una subpoblación altamente inflamatoria de granulocitos inmaduros de baja densidad (LDGi). Un análisis de regresión logística demostró que el riesgo de deterioro óseo está más influenciado por el sexo femenino que por la edad y que, de los múltiples factores asociados a mayor deterioro óseo estudiados, sólo la expansión de LDGi estima el riesgo de alteraciones óseas en estos pacientes independientemente de su edad y sexo.Conclusión: La expansión de LDGi provee de un biomarcador certero para el diagnóstico de deterioro óseo y para monitorizar estrategias que atenúen su progresión en pacientes en DP de cualquier edad y sexo. (AU)


Humans , Fractures, Bone , Metabolism , Vascular Calcification , Inflammation , Malnutrition
14.
J Exp Bot ; 73(17): 5773-5778, 2022 09 30.
Article En | MEDLINE | ID: mdl-36178429
15.
Life (Basel) ; 12(4)2022 Mar 25.
Article En | MEDLINE | ID: mdl-35454969

Matricaria chamomilla L. is a famous medicinal plant distributed worldwide. It is widely used in traditional medicine to treat all kinds of diseases, including infections, neuropsychiatric, respiratory, gastrointestinal, and liver disorders. It is also used as a sedative, antispasmodic, antiseptic, and antiemetic. In this review, reports on M. chamomilla taxonomy, botanical and ecology description, ethnomedicinal uses, phytochemistry, biological and pharmacological properties, possible application in different industries, and encapsulation were critically gathered and summarized. Scientific search engines such as Web of Science, PubMed, Wiley Online, SpringerLink, ScienceDirect, Scopus, and Google Scholar were used to gather data on M. chamomilla. The phytochemistry composition of essential oils and extracts of M. chamomilla has been widely analyzed, showing that the plant contains over 120 constituents. Essential oils are generally composed of terpenoids, such as α-bisabolol and its oxides A and B, bisabolone oxide A, chamazulene, and ß-farnesene, among other compounds. On the other hand, M. chamomilla extracts were dominated by phenolic compounds, including phenolic acids, flavonoids, and coumarins. In addition, M. chamomilla demonstrated several biological properties such as antioxidant, antibacterial, antifungal, anti-parasitic, insecticidal, anti-diabetic, anti-cancer, and anti-inflammatory effects. These activities allow the application of M. chamomilla in the medicinal and veterinary field, food preservation, phytosanitary control, and as a surfactant and anti-corrosive agent. Finally, the encapsulation of M. chamomilla essential oils or extracts allows the enhancement of its biological activities and improvement of its applications. According to the findings, the pharmacological activities of M. chamomilla confirm its traditional uses. Indeed, M. chamomilla essential oils and extracts showed interesting antioxidant, antibacterial, antifungal, anticancer, antidiabetic, antiparasitic, anti-inflammatory, anti-depressant, anti-pyretic, anti-allergic, and analgesic activities. Moreover, the most important application of M. chamomilla was in the medicinal field on animals and humans.

16.
Molecules ; 27(5)2022 Feb 24.
Article En | MEDLINE | ID: mdl-35268624

Brassicaceae plants are of great interest for human consumption due to their wide variety and nutritional qualities. Of the more than 4000 species that make up this family, about a hundred varieties of 6-8 genera are extensively cultivated. One of the most interesting aspects is its high content of glucosinolates, which are plant secondary metabolites with widely demonstrated anti-oncogenic properties that make them healthy. The most relevant Brassicaceae studies related to food and melatonin are examined in this paper. The role of melatonin as a beneficial agent in seedling grown mainly in cabbage and rapeseed and in the postharvest preservation of broccoli is especially analyzed. The beneficial effect of melatonin treatments on the organoleptic properties of these commonly consumed vegetables can be of great interest in the agri-food industry. Melatonin application extends the shelf life of fresh-cut broccoli while maintaining optimal visual and nutritional parameters. In addition, an integrated model indicating the role of melatonin on the organoleptic properties, the biosynthesis of glucosinolates and the regulatory action of these health-relevant compounds with anti-oncogenic activity is presented.


Brassica , Brassicaceae , Melatonin , Brassica/chemistry , Brassicaceae/chemistry , Glucosinolates/chemistry , Humans , Melatonin/metabolism , Melatonin/pharmacology , Phytochemicals/metabolism , Phytochemicals/pharmacology , Vegetables/metabolism
17.
J Exp Bot ; 73(17): 5779-5800, 2022 09 30.
Article En | MEDLINE | ID: mdl-35029657

Phytomelatonin, a multifunctional molecule that has been found to be present in all plants examined to date, has an important role in plants as a modulatory agent (a biostimulator) that improves plant tolerance to both biotic and abiotic stress. We present a review of phytomelatonin that considers its roles in plant metabolism and in particular its interactions with plant hormone network. In the primary metabolism of plants, melatonin improves the rate and efficiency of photosynthesis, as well related factors such as stomatal conductance, intercellular CO2, and Rubisco activity. It has also been shown to down-regulate some senescence transcription factors. Melatonin up-regulates many enzyme transcripts related to carbohydrates (including sucrose and starch), amino acids, and lipid metabolism, optimizing N, P, and S uptake. With respect to the secondary metabolism, clear increases in polyphenol, glucosinolate, terpenoid, and alkaloid contents have been described in numerous melatonin-treated plants. Generally, the most important genes of these secondary biosynthesis pathways have been found to be up-regulated by melatonin. The great regulatory capacity of melatonin is a result of its control of the redox and plant hormone networks. Melatonin acts as a plant master regulator, up-/down-regulating different plant hormone levels and signalling, and is a key player in redox homeostasis. It has the capacity to counteract diverse critical situations such as pathogen infections and abiotic stresses, and provide plants with varying degrees of tolerance. We propose possible future applications of melatonin for crop improvement and post-harvest product preservation.


Melatonin , Plant Growth Regulators , Amino Acids/metabolism , Carbon Dioxide/metabolism , Glucosinolates/metabolism , Melatonin/metabolism , Plant Growth Regulators/metabolism , Plants/metabolism , Polyphenols/metabolism , Ribulose-Bisphosphate Carboxylase/metabolism , Starch/metabolism , Stress, Physiological , Sucrose/metabolism , Terpenes/metabolism , Transcription Factors/metabolism
18.
Eur J Med Genet ; 65(1): 104381, 2022 Jan.
Article En | MEDLINE | ID: mdl-34763108

The recurrent 2q13 deletion syndrome is a rare genetic disorder associated with developmental delay, cardiac and urogenital malformations, and minor facial anomalies. Congenital heart defects (CHDs) are the most frequent malformations associated with del2q13. Experimental studies in zebrafish suggest that two genes mapping within the 2q13 critical region (FBLN7 and TMEM87B) could confer susceptibility to congenital heart defects in affected individuals. We reviewed the cardiac characteristics in four patients with 2q13 deletion admitted to our hospitals, and in published patients. Two of our patients had congenital heart defects, consisting in partial anomalous pulmonary venous connection, ostium secundum atrial septal defect ostium secundum, and small muscular ventricular septal defect in one of them, and aortic valve insufficiency with partial fusion of two commissures (incomplete bicuspid aortic valve) and mitral valve insufficiency due to trivial mitral valve prolapse in the other. The anatomic types of CHD in del2q13 syndrome are highly variable and distributed widely, including laterality defects, complex atrioventricular septal defect, septal anomalies, and cardiomyopathies. Cardiac evaluation should be part of the clinical workup at diagnosis of 2q13 deletion.


Chromosome Deletion , Chromosomes, Human, Pair 2 , Heart Defects, Congenital/genetics , Humans , Recurrence
19.
Cancers (Basel) ; 15(1)2022 Dec 27.
Article En | MEDLINE | ID: mdl-36612148

Many of the chemotherapeutic drugs for the treatment of cancer are molecules identified and isolated from plants or their synthetic derivatives. This work aimed to identify the bioactive compounds using LC-MS and GC-MS and to evaluate the anticancer activity of the methanolic extracts of roots, stems, leaves, and flowers from Cladanthus mixtus. The anticancer activity was evaluated in vitro against two cancer cell lines: human breast carcinoma (MCF-7) and human prostate carcinoma (PC-3), using the MTT assay and microscopic observation. A human normal lung fibroblast (MRC-5) was included to determine the extract's safety for non-tumoral cells. The chemical composition results by LC-MS analysis revealed the presence of 24 phenolic compounds. Furthermore, GC-MS analysis allowed the identification of many biomolecules belonging to terpenoids, esters, alcohols, alkanes, fatty acids, organic acids, benzenes, phenols, ketones, carbonyls, amines, sterols, and other groups. The findings suggest that the majority of C. mixtus extracts have antiproliferative activity against two cancer cell lines, MCF-7 and PC-3, and one non-tumoral cell line, MRC-5. The activity was dose-dependent, and the highest effect was obtained with leaf extract in the two cancer cell lines. Moreover, these extracts demonstrated an acceptable toxicological profile against normal cells. Overall, C. mixtus extracts revealed promising antitumor properties provided by their phytochemical composition.

20.
Plants (Basel) ; 10(10)2021 Oct 09.
Article En | MEDLINE | ID: mdl-34685952

The animal hormone melatonin (N-acetyl-5-methoxytryptamine) is a pleiotropic molecule with multiple and various functions. Phytomelatonin is the melatonin from plants and was discovered in 1995 in some species. Phytomelatonin is considered an interesting molecule in the physiology of plants, as it seems to be involved in many actions, such as germination, growth, rooting and parthenocarpy, including fruit set and ripening; it also seems to play a role during postharvest. It has been studied in processes such as primary and secondary metabolism, photosynthesis and senescence, as well as in the nitrogen and sulfur cycles. Phytomelatonin up- and down-regulates many relevant genes related to plant hormones and key genes related to the above-mentioned aspects. One of the most decisive aspects of phytomelatonin is its relevant role as a bioprotective and alleviating agent against both biotic and abiotic stressors, which has opened up the possibility of using melatonin as a phytoprotector and biostimulant in agriculture. In this respect, using material of plant origin to obtain extracts rich in phytomelatonin instead of using synthetic melatonin (thus avoiding unwanted by-products) has become a topic of discussion. This work characterized the phytomelatonin-rich extracts obtained from selected herbs and determined their contents of phytomelatonin, phenols and flavonoids; the antioxidant activity was also measured. Finally, two melatonin-specific bioassays in plants were applied to demonstrate the excellent biological properties of the natural phytomelatonin-rich extracts obtained. The herb composition and the protocols for obtaining the extracts rich in phytomelatonin are in the process of registration for their legal protection.

...