Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Biochem Behav ; 205: 173186, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33836219

RESUMEN

Serotonin is widely implicated as a modulator of brain reward function. However, laboratory studies have not yielded a consensus on which specific reward-related processes are influenced by serotonin and in what manner. Here we explored the role of serotonin in cue-reward learning in mice. In a first series of experiments, we found that acute administration of the serotonin reuptake inhibitors citalopram, fluoxetine, or duloxetine all reduced lever pressing reinforced on an FR1 schedule with presentation of a cue that had been previously paired with delivery of food. However, citalopram had no effect on responding that was reinforced with both cue and food on an FR1 schedule. Furthermore, citalopram did not affect nose poke responses that produced no auditory, visual, or proprioceptive cues but were reinforced with food pellets on a progressive ratio schedule. We next performed region-specific knock out of tryptophan hydroxylase-2 (Tph2), the rate-limiting enzyme in serotonin synthesis. Viral delivery of Cre recombinase was targeted to dorsal or median raphe nuclei (DRN, MRN), the major sources of ascending serotonergic projections. MRN but not DRN knockouts were impaired in development of cue-elicited approach during Pavlovian conditioning; both groups were subsequently hyper-responsive when lever pressing for cue presentation. The inhibitory effect of citalopram was attenuated in DRN but not MRN knockouts. Our findings are in agreement with prior studies showing serotonin to suppress responding for conditioned reinforcers. Furthermore, these results suggest an inhibitory role of MRN serotonin neurons in the initial attribution of motivational properties to a reward-predictive cue, but not in its subsequent maintenance. In contrast, the DRN appears to promote the reduction of motivational value attached to a cue when it is presented repeatedly in the absence of primary reward.


Asunto(s)
Condicionamiento Clásico/efectos de los fármacos , Núcleo Dorsal del Rafe/metabolismo , Motivación/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Serotonina/metabolismo , Animales , Citalopram/farmacología , Señales (Psicología) , Clorhidrato de Duloxetina/farmacología , Femenino , Fluoxetina/farmacología , Técnicas de Inactivación de Genes/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Recompensa , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
2.
Pharmacol Biochem Behav ; 202: 173104, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33444596

RESUMEN

Methamphetamine (METH) is a highly addictive psychostimulant. The continuous use of METH may lead to its abuse and neurotoxicity that have been associated with METH-induced increases in release of dopamine (DA) and glutamate in the brain. METH action in DA has been shown to be mediated by redistribution of DA from vesicles into cytoplasm via vesicular monoamine transporter 2 (VMAT2) and the subsequent reversal of membrane DA transporter (DAT), while little is known about the mechanisms underlying METH-induced glutamate release. Recent studies indicate that a subpopulation of midbrain DA neurons co-expresses VMAT2 and vesicular glutamate transporter 2 (VGLUT2). Therefore, we hypothesized that METH-induced glutamate release may in part originate from such a dual phenotype of DA neurons. To test this hypothesis, we used Cre-LoxP techniques to selectively delete VGLUT2 from midbrain DA neurons, and then examined nucleus accumbens (NAc) DA and glutamate responses to METH using in vivo brain microdialysis between DA-VGLUT2-KO mice and their VGLUT2-HET littermates. We found that selective deletion of VGLUT2 from DA neurons did not significantly alter basal levels of extracellular DA and glutamate, but attenuated METH-induced increases in extracellular levels of DA and glutamate. In addition, DA-VGLUT2-KO mice also displayed lower locomotor response to METH than VGLUT2-HET control mice. These findings, for the first time, suggest that cell-type specific VGLUT2 expression in DA neurons plays an important role in the behavioral and neurochemical effects of METH. Glutamate corelease from DA neurons may in part contributes to METH-induced increase in NAc glutamate release.


Asunto(s)
Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Eliminación de Gen , Ácido Glutámico/metabolismo , Mesencéfalo/metabolismo , Metanfetamina/farmacología , Transducción de Señal/efectos de los fármacos , Proteína 2 de Transporte Vesicular de Glutamato/genética , Trastornos Relacionados con Anfetaminas/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Técnicas de Inactivación de Genes , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microdiálisis/métodos , Núcleo Accumbens/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(15): 8611-8615, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32229573

RESUMEN

Electrical or optogenetic stimulation of lateral hypothalamic (LH) GABA neurons induces rapid vigorous eating in sated animals. The dopamine system has been implicated in the regulation of feeding. Previous work has suggested that a subset of LH GABA neurons projects to the ventral tegmental area (VTA) and targets GABA neurons, inhibiting them and thereby disinhibiting dopaminergic activity and release. Furthermore, stimulation-induced eating is attenuated by dopamine lesions or receptor antagonists. Here we explored the involvement of dopamine in LH stimulation-induced eating. LH stimulation caused sated mice to pick up pellets of standard chow with latencies that varied based on stimulation intensity; once food was picked up, animals ate for the remainder of the 60-s stimulation period. However, lesion of VTA GABA neurons failed to disrupt this effect. Moreover, direct stimulation of VTA or substantia nigra dopamine cell bodies failed to induce food approach or eating. Looking further, we found that some LH GABA fibers pass through the VTA to more caudal sites, where they synapse onto neurons near the locus coeruleus (LC). Similar eating was induced by stimulation of LH GABA terminals or GABA cell bodies in this peri-LC region. Lesion of peri-LC GABA neurons blocked LH stimulation-induced eating, establishing them as a critical downstream circuit element for LH neurons. Surprisingly, lesions did not alter body weight, suggesting that this system is not involved in the hunger or satiety mechanisms that govern normal feeding. Thus, we present a characterization of brain circuitry that may promote overeating and contribute to obesity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Ingestión de Alimentos/fisiología , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/metabolismo , Área Hipotalámica Lateral/fisiología , Área Tegmental Ventral/fisiología , Animales , Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/citología , Femenino , Neuronas GABAérgicas/citología , Área Hipotalámica Lateral/citología , Masculino , Ratones , Vías Nerviosas , Receptores de GABA-A/metabolismo , Recompensa , Área Tegmental Ventral/citología , Ácido gamma-Aminobutírico/metabolismo
4.
Proc Natl Acad Sci U S A ; 115(49): E11532-E11541, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30442663

RESUMEN

A subset of midbrain dopamine (DA) neurons express vesicular glutamate transporter 2 (VgluT2), which facilitates synaptic vesicle loading of glutamate. Recent studies indicate that such expression can modulate DA-dependent reward behaviors, but little is known about functional consequences of DA neuron VgluT2 expression in neurodegenerative diseases like Parkinson's disease (PD). Here, we report that selective deletion of VgluT2 in DA neurons in conditional VgluT2-KO (VgluT2-cKO) mice abolished glutamate release from DA neurons, reduced their expression of brain-derived neurotrophic factor (BDNF) and tyrosine receptor kinase B (TrkB), and exacerbated the pathological effects of exposure to the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Furthermore, viral rescue of VgluT2 expression in DA neurons of VglutT2-cKO mice restored BDNF/TrkB expression and attenuated MPTP-induced DA neuron loss and locomotor impairment. Together, these findings indicate that VgluT2 expression in DA neurons is neuroprotective. Genetic or environmental factors causing reduced expression or function of VgluT2 in DA neurons may place some individuals at increased risk for DA neuron degeneration. Therefore, maintaining physiological expression and function of VgluT2 in DA neurons may represent a valid molecular target for the development of preventive therapeutic interventions for PD.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Intoxicación por MPTP , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Mutación , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...