Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Aging Neurosci ; 15: 1250342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37810621

RESUMEN

Social interactions have a significant impact on health in humans and animal models. Social isolation initiates a cascade of stress-related physiological disorders and stands as a significant risk factor for a wide spectrum of morbidity and mortality. Indeed, social isolation stress (SIS) is indicative of cognitive decline and risk to neurodegenerative conditions, including Alzheimer's disease (AD). This study aimed to evaluate the impact of chronic, long-term SIS on the propensity to develop hallmarks of AD in young degus (Octodon degus), a long-lived animal model that mimics sporadic AD naturally. We examined inflammatory factors, bioenergetic status, reactive oxygen species (ROS), oxidative stress, antioxidants, abnormal proteins, tau protein, and amyloid-ß (Aß) levels in the hippocampus of female and male degus that were socially isolated from post-natal and post-weaning until adulthood. Additionally, we explored the effect of re-socialization following chronic isolation on these protein profiles. Our results showed that SIS promotes a pro-inflammatory scenario more severe in males, a response that was partially mitigated by a period of re-socialization. In addition, ATP levels, ROS, and markers of oxidative stress are severely affected in female degus, where a period of re-socialization fails to restore them as it does in males. In females, these effects might be linked to antioxidant enzymes like catalase, which experience a decline across all SIS treatments without recovery during re-socialization. Although in males, a previous enzyme in antioxidant pathway diminishes in all treatments, catalase rebounds during re-socialization. Notably, males have less mature neurons after chronic isolation, whereas phosphorylated tau and all detectable forms of Aß increased in both sexes, persisting even post re-socialization. Collectively, these findings suggest that long-term SIS may render males more susceptible to inflammatory states, while females are predisposed to oxidative states. In both scenarios, the accumulation of tau and Aß proteins increase the individual susceptibility to early-onset neurodegenerative conditions such as AD.

2.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806360

RESUMEN

Neuropathic pain reduces GABA and glycine receptor (GlyR)-mediated activity in spinal and supraspinal regions associated with pain processing. Interleukin-1ß (IL-1ß) alters Central Amygdala (CeA) excitability by reducing glycinergic inhibition in a mechanism that involves the auxiliary ß-subunit of GlyR (ßGlyR), which is highly expressed in this region. However, GlyR activity and its modulation by IL-1ß in supraspinal brain regions under neuropathic pain have not been studied. We performed chronic constriction injury (CCI) of the sciatic nerve in male Sprague Dawley rats, a procedure that induces hind paw plantar hyperalgesia and neuropathic pain. Ten days later, the rats were euthanized, and their brains were sliced. Glycinergic spontaneous inhibitory currents (sIPSCs) were recorded in the CeA slices. The sIPSCs from CeA neurons of CCI animals show a bimodal amplitude distribution, different from the normal distribution in Sham animals, with small and large amplitudes of similar decay constants. The perfusion of IL-1ß (10 ng/mL) in these slices reduced the amplitudes within the first five minutes, with a pronounced effect on the largest amplitudes. Our data support a possible role for CeA GlyRs in pain processing and in the neuroimmune modulation of pain perception.


Asunto(s)
Núcleo Amigdalino Central , Neuralgia , Animales , Núcleo Amigdalino Central/metabolismo , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Masculino , Neuralgia/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Glicina/metabolismo
3.
Curr Vasc Pharmacol ; 20(3): 221-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864795

RESUMEN

Glycine Receptors (GlyRs) are cell-surface transmembrane proteins that belong to the Cysloop ligand-gated ion channels superfamily (Cys-loop LGICs). Functional glycine receptors are conformed only by α-subunits (homomeric channels) or by α- and ß-subunits (heteromeric channels). The role of glycine as a cytoprotective is widely studied. New information about glycine modulation of vascular endothelial cells (ECs) function emerged last year. Glycine and its receptors are recognized to play a role as neurovascular protectors by a mechanism that involves α2GlyRs. Interestingly, the expression of α2GlyRs reduces after stroke injury. However, glycine reverses the inhibition of α2GlyRs by a mechanism involving the VEGF/pSTAT3 signaling. On the other hand, consistent evidence has demonstrated that ECs participate actively in the innate and adaptive immunological response. We recently reported that GlyRs are modulated by interleukin-1ß, suggesting new perspectives to explain the immune modulation of vascular function in pathological conditions such as cerebrovascular stroke. In this work, we distinguish the role of glycine and the allosteric modulation of glycine receptors as a new therapeutic target to confront post-ischemic injury.


Asunto(s)
Canales Iónicos Activados por Ligandos , Receptores de Glicina , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Glicina/metabolismo , Glicina/farmacología , Glicina/uso terapéutico , Humanos , Interleucina-1beta/metabolismo , Canales Iónicos Activados por Ligandos/metabolismo , Receptores de Glicina/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
4.
Front Integr Neurosci ; 16: 799147, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295186

RESUMEN

Octodon degus are a diurnal long-lived social animal widely used to perform longitudinal studies and complex cognitive tasks to test for physiological conditions with similitude in human behavior. They show a complex social organization feasible to be studied under different conditions and ages. Several aspects in degus physiology demonstrated that these animals are susceptible to environmental conditions, such as stress, fear, feeding quality, and isolation. However, the relevance of these factors in life of this animal depends on sex and age. Despite its significance, there are few studies with the intent to characterize neurological parameters that include these two parameters. To determine the basal neurophysiological status, we analyzed basic electrophysiological parameters generated during basal activity or synaptic plasticity in the brain slices of young and aged female and male degus. We studied the hippocampal circuit of animals kept in social ambient in captivity under controlled conditions. The study of basal synaptic activity in young animals (12-24 months old) was similar between sexes, but female degus showed more efficient synaptic transmission than male degus. We found the opposite in aged animals (60-84 months old), where male degus had a more efficient basal transmission and facilitation index than female degus. Furthermore, female and male degus develop significant but not different long-term synaptic plasticity (LTP). However, aged female degus need to recruit twice as many axons to evoke the same postsynaptic activity as male degus and four times more when compared to young female degus. These data suggest that, unlike male degus, the neural status of aged female degus change, showing less number or functional axons available at advanced ages. Our data represent the first approach to incorporate the effect of sex along with age progression in basal neural status.

5.
Front Mol Neurosci ; 14: 763868, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867189

RESUMEN

Alpha1-containing glycine receptors (GlyRs) are major mediators of synaptic inhibition in the spinal cord and brain stem. Recent studies reported the presence of α2-containing GlyRs in other brain regions, such as nucleus accumbens and cerebral cortex. GlyR activation decreases neuronal excitability associated with sensorial information, motor control, and respiratory functions; all of which are significantly altered during ethanol intoxication. We evaluated the role of ß GlyR subunits and of two basic amino acid residues, K389 and R390, located in the large intracellular loop (IL) of the α2 GlyR subunit, which are important for binding and functional modulation by Gßγ, the dimer of the trimeric G protein conformation, using HEK-293 transfected cells combined with patch clamp electrophysiology. We demonstrate a new modulatory role of the ß subunit on ethanol sensitivity of α2 subunits. Specifically, we found a differential allosteric modulation in homomeric α2 GlyRs compared with the α2ß heteromeric conformation. Indeed, while α2 was insensitive, α2ß GlyRs were substantially potentiated by ethanol, GTP-γ-S, propofol, Zn2+ and trichloroethanol. Furthermore, a Gßγ scavenger (ct-GRK2) selectively attenuated the effects of ethanol on recombinant α2ß GlyRs. Mutations in an α2 GlyR co-expressed with the ß subunit (α2AAß) specifically blocked ethanol sensitivity, but not propofol potentiation. These results show a selective mechanism for low ethanol concentration effects on homomeric and heteromeric conformations of α2 GlyRs and provide a new mechanism for ethanol pharmacology, which is relevant to upper brain regions where α2 GlyRs are abundantly expressed.

6.
Front Pharmacol ; 12: 613105, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33746753

RESUMEN

Interleukin-1ß (IL-1ß) is an important cytokine that modulates peripheral and central pain sensitization at the spinal level. Among its effects, it increases spinal cord excitability by reducing inhibitory Glycinergic and GABAergic neurotransmission. In the brain, IL-1ß is released by glial cells in regions associated with pain processing during neuropathic pain. It also has important roles in neuroinflammation and in regulating NMDA receptor activity required for learning and memory. The modulation of glycine-mediated inhibitory activity via IL-1ß may play a critical role in the perception of different levels of pain. The central nucleus of the amygdala (CeA) participates in receiving and processing pain information. Interestingly, this nucleus is enriched in the regulatory auxiliary glycine receptor (GlyR) ß subunit (ßGlyR); however, no studies have evaluated the effect of IL-1ß on glycinergic neurotransmission in the brain. Hence, we hypothesized that IL-1ß may modulate GlyR-mediated inhibitory activity via interactions with the ßGlyR subunit. Our results show that the application of IL-1ß (10 ng/ml) to CeA brain slices has a biphasic effect; transiently increases and then reduces sIPSC amplitude of CeA glycinergic currents. Additionally, we performed molecular docking, site-directed mutagenesis, and whole-cell voltage-clamp electrophysiological experiments in HEK cells transfected with GlyRs containing different GlyR subunits. These data indicate that IL-1ß modulates GlyR activity by establishing hydrogen bonds with at least one key amino acid residue located in the back of the loop C at the ECD domain of the ßGlyR subunit. The present results suggest that IL-1ß in the CeA controls glycinergic neurotransmission, possibly via interactions with the ßGlyR subunit. This effect could be relevant for understanding how IL-1ß released by glia modulates central processing of pain, learning and memory, and is involved in neuroinflammation.

7.
Rev. méd. Maule ; 34(2): 8-13, dic. 2019. tab
Artículo en Inglés | LILACS | ID: biblio-1371186

RESUMEN

INTRODUCTION: Increasing evidence suggests that changes in the balance of excitatory/inhibitory neurotransmission are involved in the development of the majority of chronic pain forms. In this context, impairment in glycine mediated inhibitory neurotransmission is thought to play a critical role in the disinhibition that accounts for the development and maintenance of central pain hypersensitivity. AIMS: The goal of this study was to evaluate the Glycine Receptor α3 subunit (α3GlyR) expression in neuropathic (Chronic Constriction Injury, CCI) and inflammatory (Zymosan A injected) animal models of chronic pain. RESULTS AND CONCLUSION: RT-qPCR analysis of spinal cord samples showed that glra3 gene expression does not change after 3 days of CCI and 4 hours of Zymosan A injection. However, we found that protein levels evaluated by Western blot increased after inflammatory pain. These data suggest that central sensitization is differentially regulated depending on the type of pain. α3GlyR protein expression plays an important role in the first step of inflammatory pain establishment.


Asunto(s)
Animales , Receptores de Glicina/metabolismo , Receptores de Glicina/agonistas , Sensibilización del Sistema Nervioso Central/fisiología , Dolor/diagnóstico , Dolor/fisiopatología , Zimosan/administración & dosificación , Dimensión del Dolor/métodos , Análisis de Varianza , Receptores de Glicina/química , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos
8.
Br J Pharmacol ; 173(14): 2263-77, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27128379

RESUMEN

BACKGROUND AND PURPOSE: Gelsemine is one of the principal alkaloids produced by the Gelsemium genus of plants belonging to the Loganiaceae family. The extracts of these plants have been used for many years, for a variety of medicinal purposes. Coincidentally, recent studies have shown that gelsemine exerts anxiolytic and analgesic effects on behavioural models. Several lines of evidence have suggested that these beneficial actions were dependent on glycine receptors, which are inhibitory neurotransmitter-gated ion channels of the CNS. However, it is currently unknown whether gelsemine can directly modulate the function of glycine receptors. EXPERIMENTAL APPROACH: We examined the functional effects of gelsemine on glycine receptors expressed in transfected HEK293 cells and in cultured spinal neurons by electrophysiological techniques. KEY RESULTS: Gelsemine directly modulated recombinant and native glycine receptors and exerted conformation-specific and subunit-selective effects. Gelsemine modulation was voltage-independent and was associated with differential changes in the apparent affinity for glycine and in the open probability of the ion channel. In addition, the alkaloid preferentially targeted glycine receptors in spinal neurons and showed only minor effects on GABAA and AMPA receptors. Furthermore, gelsemine significantly diminished the frequency of glycinergic and glutamatergic synaptic events without altering the amplitude. CONCLUSIONS AND IMPLICATIONS: Our results provide a pharmacological basis to explain, at least in part, the glycine receptor-dependent, beneficial and toxic effects of gelsemine in animals and humans. In addition, the pharmacological profile of gelsemine may open new approaches to the development of subunit-selective modulators of glycine receptors.


Asunto(s)
Alcaloides/farmacología , Receptores de Glicina/metabolismo , Animales , Células Cultivadas , Relación Dosis-Respuesta a Droga , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Embarazo , Receptores de Glicina/química , Relación Estructura-Actividad
9.
Pharmacol Res ; 101: 65-73, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26255765

RESUMEN

Ligand-gated ion channels (LGICs) are cell surface integral proteins that mediate the fast neurotransmission in the nervous system. LGICs require auxiliary subunits for their trafficking, assembly and pharmacological modulation. Auxiliary subunits do not form functional homomeric receptors, but are reported to assemble with the principal subunits in order to modulate their pharmacological profiles. For example, nACh receptors are built at least by co-assemble of α and ß subunits, and the neuronal auxiliary subunits ß3 and α5 and muscle type ß, δ, γ, and ϵ determine the agonist affinity of these receptors. Serotonergic 5-HT3B, 5-HT3C, 5-HT3D and 5-HT3E are reported to assemble with the 5-HT3A subunit to modulate its pharmacological profile. Functional studies evaluating the role of γ2 and δ auxiliary subunits of GABAA receptors have made important advances in the understanding of the action of benzodiazepines, ethanol and neurosteroids. Glycine receptors are composed principally by α1-3 subunits and the auxiliary subunit ß determines their synaptic location and their pharmacological response to propofol and ethanol. NMDA receptors appear to be functional as heterotetrameric channels. So far, the existence of NMDA auxiliary subunits is controversial. On the other hand, Kainate receptors are modulated by NETO 1 and 2. AMPA receptors are modulated by TARPs, Shisa 9, CKAMP44, CNIH2-3 auxiliary proteins reported that controls their trafficking, conductance and gating of channels. P2X receptors are able to associate with auxiliary Pannexin-1 protein to modulate P2X7 receptors. Considering the pharmacological relevance of different LGICs auxiliary subunits in the present work we will highlight the therapeutic potential of these modulator proteins.


Asunto(s)
Canales Iónicos Activados por Ligandos/efectos de los fármacos , Animales , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/metabolismo , Modelos Moleculares , Subunidades de Proteína , Receptores AMPA/química , Receptores AMPA/efectos de los fármacos , Receptores AMPA/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Receptores de GABA-A/metabolismo , Receptores de Glutamato/química , Receptores de Glutamato/efectos de los fármacos , Receptores de Glutamato/metabolismo , Receptores de Glicina/química , Receptores de Glicina/efectos de los fármacos , Receptores de Glicina/metabolismo , Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/efectos de los fármacos , Receptores de Ácido Kaínico/metabolismo , Receptores de N-Metil-D-Aspartato/química , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Receptores Purinérgicos P2X/química , Receptores Purinérgicos P2X/efectos de los fármacos , Receptores Purinérgicos P2X/metabolismo , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/efectos de los fármacos , Receptores de Serotonina 5-HT3/metabolismo
10.
J Pharmacol Exp Ther ; 352(1): 148-55, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25339760

RESUMEN

The α1-subunit containing glycine receptors (GlyRs) is potentiated by ethanol, in part, by intracellular Gßγ actions. Previous studies have suggested that molecular requirements in the large intracellular domain are involved; however, the lack of structural data about this region has made it difficult to describe a detailed mechanism. Using circular dichroism and molecular modeling, we generated a full model of the α1-GlyR, which includes the large intracellular domain and provides new information on structural requirements for allosteric modulation by ethanol and Gßγ. The data strongly suggest the existence of an α-helical conformation in the regions near transmembrane (TM)-3 and TM4 of the large intracellular domain. The secondary structure in the N-terminal region of the large intracellular domain near TM3 appeared critical for ethanol action, and this was tested using the homologous domain of the γ2-subunit of the GABAA receptor predicted to have little helical conformation. This region of γ2 was able to bind Gßγ and form a functional channel when combined with α1-GlyR, but it was not sensitive to ethanol. Mutations in the N- and C-terminal regions introduced to replace corresponding amino acids of the α1-GlyR sequence restored the ability to be modulated by ethanol and Gßγ. Recovery of the sensitivity to ethanol was associated with the existence of a helical conformation similar to α1-GlyR, thus being an essential secondary structural requirement for GlyR modulation by ethanol and G protein.


Asunto(s)
Etanol/farmacología , Subunidades beta de la Proteína de Unión al GTP/farmacología , Subunidades gamma de la Proteína de Unión al GTP/farmacología , Espacio Intracelular/metabolismo , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Ratas , Receptores de GABA-A/metabolismo
11.
Neuropsychopharmacology ; 39(11): 2538-48, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24801766

RESUMEN

Alcohol abuse and alcoholism are major health problems and one of the leading preventable causes of death. Before achieving better treatments for alcoholism, it is necessary to understand the critical actions of alcohol on membrane proteins that regulate fundamental functions in the central nervous system. After generating a genetically modified knock-in (KI) mouse having a glycine receptor (GlyR) with phenotypical silent mutations at KK385/386AA, we studied its cellular and in vivo ethanol sensitivity. Analyses with western blotting and immunocytochemistry indicated that the expression of α1 GlyRs in nervous tissues and spinal cord neurons (SCNs) were similar between WT and KI mice. The analysis of synaptic currents recorded from KI mice showed that the glycinergic synaptic transmission had normal properties, but the sensitivity to ethanol was significantly reduced. Furthermore, the glycine-evoked current in SCNs from KI was resistant to ethanol and G-protein activation by GTP-γ-S. In behavioral studies, KI mice did not display the foot-clasping behavior upon lifting by the tail and lacked an enhanced startle reflex response that are characteristic of other glycine KI mouse lines with markedly impaired glycine receptor function. The most notable characteristic of the KI mice was their significant lower sensitivity to ethanol (∼40%), expressed by shorter times in loss of righting reflex (LORR) in response to a sedative dose of ethanol (3.5 g/Kg). These data provide the first evidence to link a molecular site in the GlyR with the sedative effects produced by intoxicating doses of ethanol.


Asunto(s)
Etanol/farmacología , Hipnóticos y Sedantes/farmacología , Receptores de Glicina/metabolismo , Animales , Western Blotting , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/fisiología , Células Cultivadas , Femenino , Técnicas de Sustitución del Gen , Inmunohistoquímica , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Mutación , Técnicas de Placa-Clamp , Receptores de Glicina/genética , Reflejo de Sobresalto/fisiología , Médula Espinal/efectos de los fármacos , Médula Espinal/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
12.
J Neurophysiol ; 111(10): 1940-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24572089

RESUMEN

Ethanol increased the frequency of miniature glycinergic currents [miniature inhibitory postsynaptic currents (mIPSCs)] in cultured spinal neurons. This effect was dependent on intracellular calcium augmentation, since preincubation with BAPTA (an intracellular calcium chelator) or thapsigargin [a sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump inhibitor] significantly attenuated this effect. Similarly, U73122 (a phospholipase C inhibitor) or 2-aminoethoxydiphenyl borate [2-APB, an inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) inhibitor] reduced this effect. Block of ethanol action was also achieved after preincubation with Rp-cAMPS, inhibitor of the adenylate cyclase (AC)/PKA signaling pathway. These data suggest that there is a convergence at the level of IP3R that accounts for presynaptic ethanol effects. At the postsynaptic level, ethanol increased the decay time constant of mIPSCs in a group of neurons (30 ± 10% above control, n = 13/26 cells). On the other hand, the currents activated by exogenously applied glycine were consistently potentiated (55 ± 10% above control, n = 11/12 cells), which suggests that ethanol modulates synaptic and nonsynaptic glycine receptors (GlyRs) in a different fashion. Supporting the role of G protein modulation on ethanol responses, we found that a nonhydrolyzable GTP analog [guanosine 5'-O-(3-thiotriphosphate) (GTPγS)] increased the decay time constant in ∼50% of the neurons (28 ± 12%, n = 11/19 cells) but potentiated the glycine-activated Cl(-) current in most of the neurons examined (83 ± 29%, n = 7/9 cells). In addition, confocal microscopy showed that α1-containing GlyRs colocalized with Gß and Piccolo (a presynaptic cytomatrix protein) in ∼40% of synaptic receptor clusters, suggesting that colocalization of Gßγ and GlyRs might account for the difference in ethanol sensitivity at the postsynaptic level.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Etanol/farmacología , Glicina/metabolismo , Neuronas/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Canales de Cloruro/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Receptores de Inositol 1,4,5-Trifosfato/antagonistas & inhibidores , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones Endogámicos C57BL , Potenciales Postsinápticos Miniatura/efectos de los fármacos , Neuronas/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Receptores de Glicina/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Fosfolipasas de Tipo C/antagonistas & inhibidores , Fosfolipasas de Tipo C/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...