Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 13(35): 10267-10272, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277627

RESUMEN

Herein we describe a novel superhelicene structure consisting of three hexa-peri-hexabenzocoronene (HBC) units arranged in a helical geometry and creating two carbo[5]helicenes and a carbo[7]helicene. The central HBC bears a tropone moiety, which induces a saddle-helix hybrid geometry into the 3D structure of the prepared nanographene. The introduction of multiple helicenes and the position of the tropone unit trigger near-infrared circularly polarized luminescence (NIR-CPL, up to 850 nm, |g lum| = 3.0 × 10-3) combined with good photoluminescence quantum yields (ϕ F = 0.43) and upconverted emission based on two-photon absorption (TPA). Compared to previously reported superhelicenes of similar size, higher quantum yields, CPL brightness, and red-shifted absorption and emission spectra are achieved. Besides, chiroptical properties of enantiopure thin films were evaluated. These findings place this novel superhelicene as the first NIR-CPL superhelicene ever reported and make it a promising candidate for use as a chiral luminescent material in optoelectronic devices.

2.
Nanomaterials (Basel) ; 12(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35683746

RESUMEN

Supramolecular hybrids of graphene quantum dots (GQDs) and phthalocyanine (Pc) dyes were studied as turn-OFF-ON photoluminescence nanosensors for detection of ds-DNA. Pcs with four (Pc4) and eight (Pc8) positive charges were selected to interact with negatively charged GQDs. The photoluminescence of the GQDs was quenched upon interaction with the Pcs, due to the formation of non-emissive complexes. In the presence of ds-DNA, the Pcs interacted preferentially with the negatively charged ds-DNA, lifting the quenching effect over the photoluminescence of the GQDs and restoring their emission intensity. The best performance as a sensor of ds-DNA was registered for the GQD-Pc8, with a limit of detection (LOD) in the picomolar range. The LOD for GQD-Pc8 was more than one order of magnitude lower and its sensitivity was about a factor of three higher than that of the analogue GQD-Pc4 nanosensor. The sensitivity and selectivity of this simple GQD-Pc8 nanosensor is comparable to those of the more sophisticated carbon-based nanosensors for DNA reported previously.

3.
Commun Chem ; 4(1): 142, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36697839

RESUMEN

Mitochondria metabolism is an emergent target for the development of novel anticancer agents. It is amply recognized that strategies that allow for modulation of mitochondrial function in specific cell populations need to be developed for the therapeutic potential of mitochondria-targeting agents to become a reality in the clinic. In this work, we report dipolar and quadrupolar quinolizinium and benzimidazolium cations that show mitochondria targeting ability and localized light-induced mitochondria damage in live animal cells. Some of the dyes induce a very efficient disruption of mitochondrial potential and subsequent cell death under two-photon excitation in the Near-infrared (NIR) opening up possible applications of azonia/azolium aromatic heterocycles as precision photosensitizers. The dipolar compounds could be excited in the NIR due to a high two-photon brightness while exhibiting emission in the red part of the visible spectra (600-700 nm). Interaction with the mitochondria leads to an unexpected blue-shift of the emission of the far-red emitting compounds, which we assign to emission from the locally excited state. Interaction and possibly aggregation at the mitochondria prevents access to the intramolecular charge transfer state responsible for far-red emission.

4.
Front Chem ; 8: 306, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32373591

RESUMEN

In this work we describe the linear and non-linear (chiro)optical properties of an enantiopure bis-perylenediimide (PDI) cyclohexane derivative. This compound exhibits upconversion based on a two-photon absorption (TPA) process with a cross-section value of 70 GM together with emission of circularly polarized luminescence (CPL), showing a glum in the range of 10-3. This simple structure represents one of the scarce examples of purely organic compounds combining both TPA and CPL responses, together with large values of molar absorptivity and fluorescence quantum yield with emission in the 500-600 nm. Self-assembly induced by introduction of a poor solvent allows for a spectacular shift of the emission into the near-infrared (NIR, 650-750 nm) by formation of well-defined rotationally displaced dimers. Therefore, we are here presenting a versatile platform whose optical properties can be simply tuned by self-assembly or by functionalization of the electron-deficient aromatic core of PDIs.

5.
Angew Chem Int Ed Engl ; 59(18): 7139-7145, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32159924

RESUMEN

A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.

6.
Nanoscale ; 10(26): 12505-12514, 2018 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-29931025

RESUMEN

Carbon nanodots (Cdots) are now emerging as promising nonlinear fluorophores for applications in biological environments. A thorough and systematic approach to the two-photon induced emission of Cdots that could provide design guidelines to control their nonlinear emission properties is still missing. In this work, we address the nonlinear optical spectroscopy of Cdots prepared by controlled chemical cutting of graphene oxide (GO). The two-photon absorption in the 700-1000 nm region and the corresponding emission spectrum are carefully investigated. The highest two-photon absorption cross-section estimated was 130 GM at 720 nm. This value is comparable with the one reported for graphene nanoribbons with push-pull architecture. The emission spectrum depends on the excitation mode. At the same excitation energy, nonlinear excitation results in excitation-wavelength independent emission, while upon linear excitation the emission is excitation-wavelength dependent. The biphotonic interaction seems to be selective towards sp2 clusters bearing electron donor and acceptor groups found in push-pull architectures. Both linear and nonlinear emission can be understood based on the existence of isolated sp2 clusters involved in π-π stacking interactions with clusters in adjacent layers.

7.
Chem Sci ; 9(16): 3917-3924, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29780523

RESUMEN

Herein we describe a distorted ribbon-shaped nanographene exhibiting unprecedented combination of optical properties in graphene-related materials, namely upconversion based on two-photon absorption (TPA-UC) together with circularly polarized luminescence (CPL). The compound is a graphene molecule of ca. 2 nm length and 1 nm width with edge defects that promote the distortion of the otherwise planar lattice. The edge defects are an aromatic saddle-shaped ketone unit and a [5]carbohelicene moiety. This system is shown to combine two-photon absorption and circularly polarized luminescence and a remarkably long emission lifetime of 21.5 ns. The [5]helicene is responsible for the chiroptical activity while the push-pull geometry and the extended network of sp2 carbons are factors favoring the nonlinear absorption. Electronic structure theoretical calculations support the interpretation of the results.

8.
J Org Chem ; 83(9): 5282-5287, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29644855

RESUMEN

The synthesis of two triads with two porphyrinyl units linked by oligopyridine derivatives and a new ß-functionalized porphyrin-dihydroazepine is described. One of the porphyrin-oligopyridine triads has a quinquepyridine unit connecting the porphyrins ß-pyrrolic positions, while the other one has an asymmetric quaterpyridine with one of the pyridines fused to the porphyrin. All compounds have fluorescence emission quantum yields in the range of meso-tetraphenylporphyrin (16-22%).

9.
Chem Commun (Camb) ; 54(27): 3359-3362, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29542798

RESUMEN

Turning on the fluorescence of [3]cumulenes: we report the luminescence at room temperature upon aggregation of [3]cumulenes functionalized with propeller-like heptagon-containing polyphenylenes. These endgroups turn on the emission of a [3]cumulene by steric protection and restriction of their intramolecular rotations in the aggregates.

10.
Phys Chem Chem Phys ; 19(16): 10255-10263, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28265616

RESUMEN

Quindoline (QUIND, indolo[3,2-b]quinoline) and cryptolepine (CRYPT, 5-methyl-10H-indolo[3,2-b]quinoline) together with their corresponding derivatives have been studied for decades due to their important biological activity against diseases like malaria. The biological activity of drugs is routinely investigated using fluorescence based methods. However, recent reports show that the photophysics of CRYPT and its analogues is not yet understood. Herein, the photophysics of CRYPT and QUIND is studied in aqueous solutions at different pH values and in both protic and aprotic solvents of different polarities. CRYPT and QUIND are shown to exist in different prototropic forms depending on pH and solvent polarity. CRYPT is found to be more sensitive to the solvent nature. Both compounds are shown to have two-photon stimulated emission. Their two-photon absorption (TPA) cross-sections were measured in the 710-960 nm range. The TPA cross-section is relatively low but allows for the observation of both compounds in HEK 293 T cells, where CRYPT is found mostly in the nucleus and QUIND accumulates in the cytoplasm.

11.
J Phys Chem A ; 119(11): 2351-62, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25135761

RESUMEN

Charged molecules based on the quinolizinum cation have potential applications as labels in fluorescence imaging in biological media under nonlinear excitation. A systematic study of the linear and nonlinear photophysics of derivatives of the quinolizinum cation substituted by either dimethylaniline or methoxyphenyl electron donors is performed. The effects of donor strength, conjugation length, and symmetry in the two-photon emission efficiency are analyzed in detail. The best performing nonlinear fluorophore, with two-photon absorption cross sections of 1140 GM and an emission quantum yield of 0.22, is characterized by a symmetric D-π-A(+)-π-D architecture based on the methoxyphenyl substituent. Application of this molecule as a fluorescent marker in optical microscopy of living cells revealed that, under favorable conditions, the fluorophore can be localized in the cytoplasmatic compartment of the cell, staining vesicular shape organelles. At higher dye concentrations and longer staining times, the fluorophore can also penetrate into the nucleus. The nonlinearly excited fluorescence lifetime imaging shows that the fluorophore lifetime is sensitive to its location in the different cell compartments. Using fluorescence lifetime microscopy, a multicolor map of the cell is drafted with a single dye.


Asunto(s)
Colorantes Fluorescentes/química , Quinolizinas/química , Colorantes Fluorescentes/síntesis química , Células HEK293 , Humanos , Microscopía Fluorescente , Estructura Molecular , Teoría Cuántica , Quinolizinas/síntesis química
12.
J Mater Chem B ; 1(16): 2169-2177, 2013 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32260850

RESUMEN

The two-photon absorption properties of a set of linear copolymers based on the regular alternation of a 2,4,6-tris(thiophen-2-yl)-1,3,5-triazine electron-accepting unit with different electron-donating groups attached to two of the thiophen ends were investigated. Comparison of these data with those of the analogous octupolar monomers and hyperbranched polymers allows us to understand the role of the triazine-thiophen core and its molecular architecture in the nonlinear optical properties of these polymeric materials. It is concluded that the arrangement of the push-pull unit into a unidimensional array, as it is the case of the linear copolymer, favours the two-photon absorption cross-section. Hybrid nanoparticles dispersed in water were prepared from selected polymers with two-photon excited fluorescence emission comparable with those of the best performing quantum dots.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...