Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 30(10): 17164-17173, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-36221545

RESUMEN

The possibility to perform distributed measurements of the effective refractive index difference between distinct modes in few mode optical fibers is demonstrated using phase sensitive optical time domain reflectometry. Effective refractive index differences between LP02, LP21a and LP21b modes are measured with for a spatial resolution of 24m.

2.
Materials (Basel) ; 15(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36013741

RESUMEN

Our study investigated the partially degenerate intermodal four-wave mixing (IM-FWM) process in nonlinear multimode optical fibers with strain-induced birefringence. The difference in the refractive index along the two orthogonal directions was due to the photoelastic effect that occurred when the fiber under test (FUT) was subjected to uniformly applied diameter stress caused by winding on a cylinder of a given diameter. Our work analyzed how the nonlinear frequency conversion and the output modal field profiles depended on the degree of birefringence in FUT. The experimental results significantly affected the order of the excited moduli in fiber sections characterized by different amounts of birefringence. We also checked the efficiency of the FWM process for different polarizations of the pump beam to determine those for which the FWM process was most effective for the 532 nm sub-nanosecond pulses. More than 30% conversion efficiency was obtained for the FUTs with a length of tens of centimeters.

3.
Materials (Basel) ; 15(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35806672

RESUMEN

We demonstrate a partially degenerated intermodal four-wave mixing (FWM) process realized in a few-mode nonlinear optical fiber, leading to the effective generation of visible red and blue light from 532 nm sub-nanosecond pulses. We present a self-seeded FWM configuration with a signal beam obtained in the additional section of the same type of fiber that ensures perfect matching between the seed and the Stokes beams. Over 40% of the wavelength conversion efficiency in the FWM process was obtained using a fiber length shorter than 1 m.

4.
Opt Express ; 29(24): 39137-39149, 2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34809283

RESUMEN

In this work, a compact all-fiber bend sensor based on a dual-core microstructured optical fiber has been manufactured and characterized. The sensor relies on the unbalanced Michelson interferometric technique realized by attaching a piece of silica fiber to one of the fiber cores acting as the unbalancing element. Three probes with different lengths of the unbalancing element have been experimentally tested for sensitivity tailoring analysis. Additionally, a theoretical model has been developed for comparison and verification of the results. Good linear behavior of the spectral shift with bend has been measured and it has been proven that the sensitivity of the sensor depends on the length of the unbalancing element and the orientation of the cores. Higher sensitivities are achieved for shorter lengths of the unbalancing element and orientation of the core axis parallel to the bend direction. The highest sensitivity reported is 9.97 pm/µm for the case of 34 µm of unbalancing element and orientation of 0 degrees.

5.
Opt Express ; 29(13): 20487-20497, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266137

RESUMEN

In this paper, a long-distance distributed pressure sensing system based on a special fiber and using frequency-scanned phase-sensitive optical time-domain reflectometry is proposed. The fiber shows high pressure sensitivity (159 MHz/bar) and low loss (3 dB/km) owing to its simple structure made of two large air holes in the cladding. The pressure response of the two orthogonal polarization axes of the fiber is explored distinctively. Distributed pressure sensing over a long sensing range (720 m) and high spatial resolution (5 cm) is demonstrated, resulting in 14,400 resolved sensing points with uncertainty on pressure of 0.49 bar. Discrimination between the temperature/strain and pressure responses is demonstrated, taking advantage of the different pressure and temperature sensitivities of the two polarization axes. In addition, the temperature response of the fiber is studied and the simulation results show the possibility of scaling the temperature sensitivity by adjusting the size of the core. The sensing distance limit due to crosstalk between the polarization axes is also discussed.

6.
Opt Express ; 27(15): 20763-20773, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510165

RESUMEN

In this paper, a highly-sensitive distributed shape sensor based on a multicore fiber (MCF) and phase-sensitive optical time-domain reflectometry (φ-OTDR) is proposed and experimentally demonstrated. The implemented system features a high strain sensitivity (down to ∼0.3 µÉ›) over a 24 m-long MCF with a spatial resolution of 10 cm. The results demonstrate good repeatability of the relative fiber curvature and bend orientation measurements. Changes in the fiber shape are successfully retrieved, showing detectable displacements of the free moving fiber end as small as 50 µm over a 60 cm-long fiber. In addition, the proposed technique overcomes cross-sensitivity issues between strain and temperature. To the best of our knowledge, the results presented in this work provide the first demonstration of distributed shape sensing based on φ-OTDR using MCFs. This high-sensitivity technique proves to be a promising approach for a wide range of new applications such as dynamic, long distance and three-dimensional distributed shape sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA