RESUMEN
STUDY OBJECTIVE: Identify small molecule biomarkers of insufficient sleep using untargeted plasma metabolomics in humans undergoing experimental insufficient sleep. METHODS: We conducted a crossover laboratory study where 16 normal-weight participants (eight men; age 22 ± 5 years; body mass index < 25 kg/m2) completed three baseline days (9 hours sleep opportunity per night) followed by 5-day insufficient (5 hours sleep opportunity per night) and adequate (9 hours sleep opportunity per night) sleep conditions. Energy balanced diets were provided during baseline, with ad libitum energy intake provided during the insufficient and adequate sleep conditions. Untargeted plasma metabolomics analyses were performed using blood samples collected every 4 hours across the final 24 hours of each condition. Biomarker models were developed using logistic regression and linear support vector machine (SVM) algorithms. RESULTS: The top-performing biomarker model was developed by linear SVM modeling, consisted of 65 compounds, and discriminated insufficient versus adequate sleep with 74% overall accuracy and a Matthew's Correlation Coefficient of 0.39. The compounds in the top-performing biomarker model were associated with ATP Binding Cassette Transporters in Lipid Homeostasis, Phospholipid Metabolic Process, Plasma Lipoprotein Remodeling, and sphingolipid metabolism. CONCLUSION: We identified potential metabolomics-based biomarkers of insufficient sleep in humans. Although our current biomarkers require further development and validation using independent cohorts, they have potential to advance our understanding of the negative consequences of insufficient sleep, improve diagnosis of poor sleep health, and could eventually help identify targets for countermeasures designed to mitigate the negative health consequences of insufficient sleep.
Asunto(s)
Metabolómica , Privación de Sueño , Adolescente , Adulto , Biomarcadores , Ingestión de Energía , Humanos , Masculino , Sueño , Adulto JovenRESUMEN
STUDY OBJECTIVES: Photic and non-photic stimuli have been shown to shift the phase of the human circadian clock. We examined how photic and non-photic time cues may be combined by the human circadian system by assessing the phase advancing effects of one evening dose of exogenous melatonin, alone and in combination with one session of morning bright light exposure. DESIGN: Randomized placebo-controlled double-blind circadian protocol. The effects of four conditions, dim light (â¼1.9 lux, â¼0.6 Watts/m(2))-placebo, dim light-melatonin (5 mg), bright light (â¼3000 lux, â¼7 Watts/m(2))-placebo, and bright light-melatonin on circadian phase was assessed by the change in the salivary dim light melatonin onset (DLMO) prior to and following treatment under constant routine conditions. Melatonin or placebo was administered 5.75 h prior to habitual bedtime and 3 h of bright light exposure started 1 h prior to habitual wake time. SETTING: Sleep and chronobiology laboratory environment free of time cues. PARTICIPANTS: Thirty-six healthy participants (18 females) aged 22 ± 4 y (mean ± SD). RESULTS: Morning bright light combined with early evening exogenous melatonin induced a greater phase advance of the DLMO than either treatment alone. Bright light alone and melatonin alone induced similar phase advances. CONCLUSION: Information from light and melatonin appear to be combined by the human circadian clock. The ability to combine circadian time cues has important implications for understanding fundamental physiological principles of the human circadian timing system. Knowledge of such principles is important for designing effective countermeasures for phase-shifting the human circadian clock to adapt to jet lag, shift work, and for designing effective treatments for circadian sleep-wakefulness disorders.