Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(7)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35406701

RESUMEN

A bone marrow-derived mesenchymal stromal cell (MSC) transplant and a bioengineered nanofiber-hydrogel composite (NHC) have been shown to stimulate nervous tissue repair in the contused spinal cord in rodent models. Here, these two modalities were combined to assess their repair effects in the contused spinal cord in adult rats. Cohorts of contused rats were treated with MSC in NHC (MSC-NHC), MSC in phosphate-buffered saline (MSC-PBS), NHC, or PBS injected into the contusion site at 3 days post-injury. One week after injury, there were significantly fewer CD68+ cells in the contusion with MSC-NHC and NHC, but not MSC-PBS. The reduction in CD86+ cells in the injury site with MSC-NHC was mainly attributed to NHC. One and eight weeks after injury, we found a greater CD206+/CD86+ cell ratio with MSC-NHC or NHC, but not MSC-PBS, indicating a shift from a pro-inflammatory towards an anti-inflammatory milieu in the injury site. Eight weeks after injury, the injury size was significantly reduced with MSC-NHC, NHC, and MSC-PBS. At this time, astrocyte, and axon presence in the injury site was greater with MSC-NHC compared with MSC-PBS. We did not find a significant effect of NHC on MSC transplant survival, and hind limb function was similar across all groups. However, we did find fewer macrophages at 1 week post-injury, more macrophages polarized towards a pro-regenerative phenotype at 1 and 8 weeks after injury, and reduced injury volume, more astrocytes, and more axons at 8 weeks after injury in rats with MSC-NHC and NHC alone compared with MSC-PBS; these findings were especially significant between rats with MSC-NHC and MSC-PBS. The data support further study in the use of an NHC-MSC combination transplant in the contused spinal cord.


Asunto(s)
Contusiones , Células Madre Mesenquimatosas , Nanofibras , Traumatismos de la Médula Espinal , Animales , Hidrogeles , Ratas , Ratas Sprague-Dawley , Traumatismos de la Médula Espinal/terapia
2.
Respir Res ; 22(1): 265, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34666752

RESUMEN

RATIONALE: αv integrins, key regulators of transforming growth factor-ß activation and fibrogenesis in in vivo models of pulmonary fibrosis, are expressed on abnormal epithelial cells (αvß6) and fibroblasts (αvß1) in fibrotic lungs. OBJECTIVES: We evaluated multiple αv integrin inhibition strategies to assess which most effectively reduced fibrogenesis in explanted lung tissue from patients with idiopathic pulmonary fibrosis. METHODS: Selective αvß6 and αvß1, dual αvß6/αvß1, and multi-αv integrin inhibitors were characterized for potency, selectivity, and functional activity by ligand binding, cell adhesion, and transforming growth factor-ß cell activation assays. Precision-cut lung slices generated from lung explants from patients with idiopathic pulmonary fibrosis or bleomycin-challenged mouse lungs were treated with integrin inhibitors or standard-of-care drugs (nintedanib or pirfenidone) and analyzed for changes in fibrotic gene expression or TGF-ß signaling. Bleomycin-challenged mice treated with dual αvß6/αvß1 integrin inhibitor, PLN-74809, were assessed for changes in pulmonary collagen deposition and Smad3 phosphorylation. MEASUREMENTS AND MAIN RESULTS: Inhibition of integrins αvß6 and αvß1 was additive in reducing type I collagen gene expression in explanted lung tissue slices from patients with idiopathic pulmonary fibrosis. These data were replicated in fibrotic mouse lung tissue, with no added benefit observed from inhibition of additional αv integrins. Antifibrotic efficacy of dual αvß6/αvß1 integrin inhibitor PLN-74809 was confirmed in vivo, where dose-dependent inhibition of pulmonary Smad3 phosphorylation and collagen deposition was observed. PLN-74809 also, more potently, reduced collagen gene expression in fibrotic human and mouse lung slices than clinically relevant concentrations of nintedanib or pirfenidone. CONCLUSIONS: In the fibrotic lung, dual inhibition of integrins αvß6 and αvß1 offers the optimal approach for blocking fibrogenesis resulting from integrin-mediated activation of transforming growth factor-ß.


Asunto(s)
Antifibróticos/farmacología , Células Epiteliales/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Integrina alfa6beta1/antagonistas & inhibidores , Pulmón/efectos de los fármacos , Receptores de Vitronectina/antagonistas & inhibidores , Animales , Bleomicina , Línea Celular , Técnicas de Cocultivo , Cadena alfa 1 del Colágeno Tipo I/genética , Cadena alfa 1 del Colágeno Tipo I/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Integrina alfa6beta1/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Fosforilación , Receptores de Vitronectina/metabolismo , Transducción de Señal , Proteína smad3/metabolismo
3.
Sci Transl Med ; 12(557)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32817366

RESUMEN

Hepatic stellate cells (HSCs) drive hepatic fibrosis. Therapies that inactivate HSCs have clinical potential as antifibrotic agents. We previously identified acid ceramidase (aCDase) as an antifibrotic target. We showed that tricyclic antidepressants (TCAs) reduce hepatic fibrosis by inhibiting aCDase and increasing the bioactive sphingolipid ceramide. We now demonstrate that targeting aCDase inhibits YAP/TAZ activity by potentiating its phosphorylation-mediated proteasomal degradation via the ubiquitin ligase adaptor protein ß-TrCP. In mouse models of fibrosis, pharmacologic inhibition of aCDase or genetic knockout of aCDase in HSCs reduces fibrosis, stromal stiffness, and YAP/TAZ activity. In patients with advanced fibrosis, aCDase expression in HSCs is increased. Consistently, a signature of the genes most down-regulated by ceramide identifies patients with advanced fibrosis who could benefit from aCDase targeting. The findings implicate ceramide as a critical regulator of YAP/TAZ signaling and HSC activation and highlight aCDase as a therapeutic target for the treatment of fibrosis.


Asunto(s)
Ceramidasa Ácida , Células Estrelladas Hepáticas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Humanos , Ratones , Transducción de Señal
4.
Biomaterials ; 245: 119978, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32217415

RESUMEN

An injury to the spinal cord causes long-lasting loss of nervous tissue because endogenous nervous tissue repair and regeneration at the site of injury is limited. We engineered an injectable nanofiber-hydrogel composite (NHC) with interfacial bonding to provide mechanical strength and porosity and examined its effect on repair and neural tissue regeneration in an adult rat model of spinal cord contusion. At 28 days after treatment with NHC, the width of the contused spinal cord segment was 2-fold larger than in controls. With NHC treatment, tissue in the injury had a 2-fold higher M2/M1 macrophage ratio, 5-fold higher blood vessel density, 2.6-fold higher immature neuron presence, 2.4-fold higher axon density, and a similar glial scar presence compared with controls. Spared nervous tissue volume in the contused segment and hind limb function was similar between groups. Our findings indicated that NHC provided mechanical support to the contused spinal cord and supported pro-regenerative macrophage polarization, angiogenesis, axon growth, and neurogenesis in the injured tissue without any exogenous factors or cells. These results motivate further optimization of the NHC and delivery protocol to fully translate the potential of the unique properties of the NHC for treating spinal cord injury.


Asunto(s)
Nanofibras , Traumatismos de la Médula Espinal , Animales , Axones , Hidrogeles , Regeneración Nerviosa , Ratas , Recuperación de la Función , Médula Espinal , Traumatismos de la Médula Espinal/terapia
5.
Cancers (Basel) ; 11(2)2019 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-30709011

RESUMEN

Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults, and despite optimized treatment options, median survival remains dismal. Contemporary evidence suggests disease recurrence results from expansion of a robustly radioresistant subset of GBM progenitor cells, termed GBM stem cells (GSCs). In this study, we utilized transmission electron microscopy to uncover ultrastructural effects on patient-derived GSC lines exposed to supratherapeutic radiotherapy levels. Elevated autophagosome formation and increased endoplasmic reticulum (ER) internal diameter, a surrogate for ER stress and activation of unfolded protein response (UPR), was uncovered. These observations were confirmed via protein expression through Western blot. Upon interrogating genomic data from an open-access GBM patient database, overexpression of UPR-related chaperone protein genes was inversely correlated with patient survival. This indicated controlled UPR may play a role in promoting radioresistance. To determine if potentiating UPR further can induce apoptosis, we exposed GSCs to radiation with an ER stress-inducing drug, 2-deoxy-D-glucose (2-DG), and found dose-dependent decreases in viability and increased apoptotic marker expression. Taken together, our results indicate GSC radioresistance is, in part, achieved by overexpression and overactivation of ER stress-related pathways, and this effect can be overcome via potentiation of UPR, leading to loss of GSC viability.

6.
J Neurointerv Surg ; 10(5): 487-492, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28963366

RESUMEN

Innovations in interventional cardiology historically predate those in neuro-intervention. As such, studying trends in interventional cardiology can be useful in exploring avenues to optimise neuro-interventional techniques. One such cardiology innovation has been the steady conversion of arterial puncture sites from transfemoral access (TFA) to transradial access (TRA), a paradigm shift supported by safety benefits for patients. While neuro-intervention has unique anatomical challenges, the access itself is identical. As such, examining the extensive cardiology literature on the radial approach has the potential to offer valuable lessons for the neuro-interventionalist audience who may be unfamiliar with this body of work. Therefore, we present here a report, particularly for neuro-interventionalists, regarding the best practices for TRA by reviewing the relevant cardiology literature. We focused our review on the data most relevant to our audience, namely that surrounding the access itself. By reviewing the cardiology literature on metrics such as safety profiles, cost and patient satisfaction differences between TFA and TRA, as well as examining the technical nuances of the procedure and post-procedural care, we hope to give physicians treating complex cerebrovascular disease a broader data-driven understanding of TRA.


Asunto(s)
Cardiología/métodos , Intervención Coronaria Percutánea/métodos , Arteria Radial/diagnóstico por imagen , Arteria Radial/cirugía , Cardiología/instrumentación , Femenino , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/cirugía , Humanos , Masculino , Intervención Coronaria Percutánea/instrumentación , Estudios Prospectivos , Punciones , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos
7.
J Nat Med ; 71(1): 16-26, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27372348

RESUMEN

Resistance mechanisms employed by high-grade gliomas allow them to successfully evade current standard treatment of chemotherapy and radiation treatment. Withaferin A (WA), utilized in Ayurvedic medicine for centuries, is attracting attention for its antitumor capabilities. Here we review pertinent literature on WA as a high-grade glioma treatment, and discuss the cancerous mechanisms it affects. WA is relatively nontoxic and has shown potential in crossing the blood-brain barrier. WA prevents p53 alterations and inactivates overexpressed MDM2 through ARF and ROS production. Furthermore, WA upregulates Bax, inducing mitochondrial death cascades, inhibits mutated Akt, mTOR, and NF-κB pathways, and inhibits angiogenesis in tumors. Therapy with WA for high-grade gliomas is supported through the literature. Further investigation is warranted and encouraged to fully unearth its abilities against malignant gliomas.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Witanólidos/uso terapéutico , Adulto , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Witanólidos/administración & dosificación
8.
Neurosci Lett ; 652: 50-55, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-27702629

RESUMEN

There is no treatment for people with spinal cord injury that leads to significant functional improvements. The extracellular matrix is an intricate, 3-dimensional, structural framework that defines the environment for cells in the central nervous system. The components of extracellular matrix have signaling and regulatory roles in the fate and function of neuronal and non-neuronal cells in the central nervous system. This review discusses the therapeutic potential of extracellular matrix components for spinal cord repair.


Asunto(s)
Productos Biológicos/uso terapéutico , Matriz Extracelular/química , Traumatismos de la Médula Espinal/terapia , Médula Espinal/efectos de los fármacos , Animales , Trasplante de Células , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/uso terapéutico , Humanos , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...