Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 97(6): 1813-1822, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37029818

RESUMEN

The 1958 Delaney amendment to the Federal Food Drug and Cosmetics Act prohibited food additives causing cancer in animals by appropriate tests. Regulators responded by adopting chronic lifetime cancer tests in rodents, soon challenged as inappropriate, for they led to very inconsistent results depending on the subjective choice of animals, test design and conduct, and interpretive assumptions. Presently, decades of discussions and trials have come to conclude it is impossible to translate chronic animal data into verifiable prospects of cancer hazards and risks in humans. Such conclusion poses an existential crisis for official agencies in the US and abroad, which for some 65 years have used animal tests to justify massive regulations of alleged human cancer hazards, with aggregated costs of $trillions and without provable evidence of public health advantages. This article addresses suitable remedies for the US and potentially worldwide, by critically exploring the practices of regulatory agencies vis-á-vis essential criteria for validating scientific evidence. According to this analysis, regulations of alleged cancer hazards and risks have been and continue to be structured around arbitrary default assumptions at odds with basic scientific and legal tests of reliable evidence. Such practices raise a manifold ethical predicament for being incompatible with basic premises of the US Constitution, and with the ensuing public expectations of testable truth and transparency from government agencies. Potential remedies in the US include amendments to the US Administrative Procedures Act, preferably requiring agencies to justify regulations compliant with the Daubert opinion of the Daubert ruling of the US Supreme Court, which codifies the criteria defining reliable scientific evidence. International reverberations are bound to follow what remedial actions may be taken in the US, the origin of current world regulatory procedures to control alleged cancer causing agents.


Asunto(s)
Neoplasias , Salud Pública , Animales , Humanos , Estados Unidos , Carcinógenos/toxicidad , Neoplasias/inducido químicamente , Neoplasias/prevención & control
2.
Arch Toxicol ; 95(9): 3133-3136, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34363510

RESUMEN

The EU chemicals strategy for sustainability (CSS) asserts that both human health and the environment are presently threatened and that further regulation is necessary. In a recent Guest Editorial, members of the German competent authority for risk assessment, the BfR, raised concerns about the scientific justification for this strategy. The complexity and interdependence of the networks of regulation of chemical substances have ensured that public health and wellbeing in the EU have continuously improved. A continuous process of improvement in consumer protection is clearly desirable but any initiative directed towards this objective must be based on scientific knowledge. It must not confound risk with other factors in determining policy. This conclusion is fully supported in the present Commentary including the request to improve both, data collection and the time-consuming and bureaucratic procedures that delay the publication of regulations.


Asunto(s)
Salud Pública/legislación & jurisprudencia , Medición de Riesgo/legislación & jurisprudencia , Unión Europea , Sustancias Peligrosas/toxicidad , Política de Salud/legislación & jurisprudencia , Humanos
5.
J Toxicol Environ Health A ; 83(13-14): 485-494, 2020 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-32552445

RESUMEN

Theoretically, both synthetic endocrine-disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine-disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower than S-EDCs. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea, and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Disruptores Endocrinos/síntesis química , Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales/análisis , Disruptores Endocrinos/metabolismo , Sistema Endocrino/efectos de los fármacos , Sistema Endocrino/fisiología , Exposición a Riesgos Ambientales/estadística & datos numéricos , Retroalimentación Fisiológica/efectos de los fármacos , Hormonas/metabolismo , Humanos , Unión Proteica , Receptores de Superficie Celular/metabolismo , Medición de Riesgo , Pruebas de Toxicidad/normas
6.
Arch Toxicol ; 94(7): 2549-2557, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32514609

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Exposición Dietética/efectos adversos , Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Fitoquímicos/efectos adversos , Pruebas de Toxicidad , Animales , Disruptores Endocrinos/síntesis química , Sistema Endocrino/metabolismo , Sistema Endocrino/fisiopatología , Humanos , Ligandos , Medición de Riesgo
7.
Chem Biol Interact ; 326: 109099, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32370863

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Disruptores Endocrinos/efectos adversos , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Ambientales/efectos adversos , Animales , Humanos
8.
Toxicol In Vitro ; 67: 104861, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32360643

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Disruptores Endocrinos/toxicidad , Exposición a Riesgos Ambientales , Contaminantes Ambientales/toxicidad , Hormonas/metabolismo , Sistema Endocrino , Humanos , Receptores de Superficie Celular/metabolismo , Medición de Riesgo
10.
Food Chem Toxicol ; 142: 111349, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32360905

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent than S-EDCs. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Exposición Dietética , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Humanos , Medición de Riesgo
11.
Environ Toxicol Pharmacol ; 78: 103396, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32391796

RESUMEN

Theoretically, both synthetic endocrine disrupting chemicals (S-EDCs) and natural (exogenous and endogenous) endocrine disrupting chemicals (N-EDCs) can interact with endocrine receptors and disturb hormonal balance. However, compared to endogenous hormones, S-EDCs are only weak partial agonists with receptor affinities several orders of magnitude lower. Thus, to elicit observable effects, S-EDCs require considerably higher concentrations to attain sufficient receptor occupancy or to displace natural hormones and other endogenous ligands. Significant exposures to exogenous N-EDCs may result from ingestion of foods such as soy-based diets, green tea and sweet mustard. While their potencies are lower as compared to natural endogenous hormones, they usually are considerably more potent. Effects of exogenous N-EDCs on the endocrine system were observed at high dietary intakes. A causal relation between their mechanism of action and these effects is established and biologically plausible. In contrast, the assumption that the much lower human exposures to S-EDCs may induce observable endocrine effects is not plausible. Hence, it is not surprising that epidemiological studies searching for an association between S-EDC exposure and health effects have failed. Regarding testing for potential endocrine effects, a scientifically justified screen should use in vitro tests to compare potencies of S-EDCs with those of reference N-EDCs. When the potency of the S-EDC is similar or smaller than that of the N-EDC, further testing in laboratory animals and regulatory consequences are not warranted.


Asunto(s)
Productos Biológicos/toxicidad , Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Sistema Endocrino/efectos de los fármacos , Exposición a Riesgos Ambientales , Hormonas , Humanos , Receptores de Esteroides/metabolismo , Medición de Riesgo
13.
Regul Toxicol Pharmacol ; 97: A1-A3, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30017904

RESUMEN

Several recent and prominent articles in Science and Nature deliberately mischaracterized the nature of genuine scientific evidence. Those articles take issue with the United States Environmental Protection Agency's recent proposal to structure its policies and rules only from studies with transparently published raw data. The articles claim it is an effort to obfuscate with transparency, by eliminating a host of studies not offering raw data. A remarkable declaration by a Science editorial is that properly trained experts can verify the scientific evidence of studies without access to raw data, We assert the Agency's proposal must be sustained. Transparency in reporting is a fundamental ethical imperative of objective scientific research justifying massive official regulations and policies. Putative hazards bereft of independent scientific evidence will continue to stoke public anxieties, calling for precautionary regulations and policies. These should rely not on spurious science but on transparent tradeoffs between the smallest exposures compatible with utility and with social perceptions of affordable precaution.


Asunto(s)
Agencias Gubernamentales/organización & administración , Formulación de Políticas , Animales , Humanos , Estados Unidos , United States Environmental Protection Agency
15.
Toxicology ; 371: 12-16, 2016 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-27639665

RESUMEN

A public appeal has been advanced by a large group of scientists, concerned that science has been misused in attempting to quantify and regulate unmeasurable hazards and risks.1 The appeal recalls that science is unable to evaluate hazards that cannot be measured, and that science in such cases should not be invoked to justify risk assessments in health, safety and environmental regulations. The appeal also notes that most national and international statutes delineating the discretion of regulators are ambiguous about what rules of evidence ought to apply. Those statutes should be revised to ensure that the evidence for regulatory action is grounded on the standards of the scientific method, whenever feasible. When independent scientific evidence is not possible, policies and regulations should be informed by publicly debated trade-offs between socially desirable uses and social perceptions of affordable precaution. This article explores the premises, implications and actions supporting the appeal and its objectives.


Asunto(s)
Salud/legislación & jurisprudencia , Salud/normas , Legislación como Asunto/normas , Medición de Riesgo/legislación & jurisprudencia , Medición de Riesgo/normas , Seguridad/legislación & jurisprudencia , Seguridad/normas , Ciencia/legislación & jurisprudencia , Ciencia/normas , Toxicología/legislación & jurisprudencia , Toxicología/normas , Animales , Modelos Animales de Enfermedad , Humanos
16.
Toxicology ; 371: A1, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27381659

Asunto(s)
Política Pública
18.
Toxicol Sci ; 146(1): 11-5, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26026993

RESUMEN

The present debate on chemicals with Hormonal activity, often termed 'endocrine disruptors', is highly controversial and includes challenges of the present paradigms used in toxicology and in hazard identification and risk characterization. In our opinion, chemicals with hormonal activity can be subjected to the well-evaluated health risk characterization approach used for many years including adverse outcome pathways. Many of the points arguing for a specific approach for risk characterization of chemicals with hormonal activity are based on highly speculative conclusions. These conclusions are not well supported when evaluating the available information.


Asunto(s)
Disruptores Endocrinos/farmacología , Sistema Endocrino/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Humanos , Pruebas de Toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...