Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
NPJ Precis Oncol ; 6(1): 69, 2022 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202909

RESUMEN

Widespread, comprehensive sequencing of patient tumors has facilitated the usage of precision medicine (PM) drugs to target specific genomic alterations. Therapeutic clinical trials are necessary to test new PM drugs to advance precision medicine, however, the abundance of patient sequencing data coupled with complex clinical trial eligibility has made it challenging to match patients to PM trials. To facilitate enrollment onto PM trials, we developed MatchMiner, an open-source platform to computationally match genomically profiled cancer patients to PM trials. Here, we describe MatchMiner's capabilities, outline its deployment at Dana-Farber Cancer Institute (DFCI), and characterize its impact on PM trial enrollment. MatchMiner's primary goals are to facilitate PM trial options for all patients and accelerate trial enrollment onto PM trials. MatchMiner can help clinicians find trial options for an individual patient or provide trial teams with candidate patients matching their trial's eligibility criteria. From March 2016 through March 2021, we curated 354 PM trials containing a broad range of genomic and clinical eligibility criteria and MatchMiner facilitated 166 trial consents (MatchMiner consents, MMC) for 159 patients. To quantify MatchMiner's impact on trial consent, we measured time from genomic sequencing report date to trial consent date for the 166 MMC compared to trial consents not facilitated by MatchMiner (non-MMC). We found MMC consented to trials 55 days (22%) earlier than non-MMC. MatchMiner has enabled our clinicians to match patients to PM trials and accelerated the trial enrollment process.

2.
IEEE Int Conf Rehabil Robot ; 2011: 5975455, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22275653

RESUMEN

Clinicians and scientists often focus on tracking the recovery of motor skills after spinal cord injury (SCI), but less attention is paid to the recovery of sensory skills. Measures of sensory function are imperative for evaluating the efficacy of treatments and therapies. Proprioception is one sensory modality that provides information about static position and movement sense. Because of its critical contribution to motor control, proprioception should be measured during the course of recovery after neurological injury. Current clinical methods to test proprioception are limited to crude, manual tests of movement and position sense. The purpose of this study was to develop a quantitative assessment tool to measure joint position sense in the legs. We used the Lokomat, a robotic exoskeleton, and custom software to assess joint position sense in the hip and knee in 9 able-bodied (AB) subjects and 1 person with incomplete SCI. We used two different test paradigms. Both required the subject to move the leg to a target angle, but the presentation of the target was either a remembered or visual target angle. We found that AB subjects had more accurate position sense in the remembered task than in the visual task, and that they tended to have greater accuracy at the hip than at the knee. Position sense of the subject with SCI was comparable to those of the AB subjects. We show that using the Lokomat to assess joint position sense may be an effective clinical measurement tool.


Asunto(s)
Articulaciones/fisiología , Extremidad Inferior/fisiología , Propiocepción/fisiología , Robótica/instrumentación , Robótica/métodos , Adulto , Femenino , Marcha/fisiología , Humanos , Masculino , Proyectos Piloto , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...