Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Environ Manage ; 69(5): 972-981, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132453

RESUMEN

Inundation of Australian freshwater turtle nests has been identified as a threat to recruitment and long-term viability of species such as the critically endangered white-throated snapping turtle (Elseya albagula). Water level fluctuations within water storage infrastructure can inundate significant proportions of E. albagula nests in any year. Using an ecological risk assessment framework, operating rules for a water storage in the Burnett River (South East Queensland, Australia) were implemented to support nesting of E. albagula. Turtles were encouraged to nest at higher elevations on riverbanks by maintaining higher water levels in the impoundment during the nesting season, followed by lowering of water levels during the incubation period to minimise rates of nest inundation from riverine inflows. To verify the success of the new rules, a three-year confirmation monitoring program of nest heights and water levels was undertaken. Results of confirmation monitoring showed that 3% (2018), 11% (2019) and 0% (2020) of E. albagula nests were inundated under the new operating rules, compared to previously estimated nest inundation rates of >20% in ~24% of years of a 118-year simulation period (1890-2008) under previous storage operating rules. Emergency releases from an upstream storage in 2019 and 2020 for dam safety did not affect the success of the rule, demonstrating its resilience to natural and artificial flow regimes. This study demonstrates the importance of confirmation monitoring in verifying the efficacy of targeted changes to water management, and highlights potential application across other water storage infrastructure with threatened freshwater turtle populations requiring adaptive management.


Asunto(s)
Tortugas , Animales , Australia , Agua Dulce , Ríos , Agua
2.
PLoS One ; 14(1): e0210168, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30673738

RESUMEN

The Australian lungfish has been studied for more than a century without any knowledge of the longevity of the species. Traditional methods for ageing fish, such as analysis of otolith (ear stone) rings is complicated in that lungfish otoliths differ from teleost fish in composition. As otolith sampling is also lethal, this is not appropriate for a protected species listed under Australian legislation. Lungfish scales were removed from 500 fish from the Brisbane, Burnett and Mary rivers. A sub-sample of scales (85) were aged using bomb radiocarbon techniques and validated using scales marked previously with oxytetracycline. Lungfish ages ranged from 2.5-77 years of age. Estimated population age structures derived using an Age Length Key revealed different recruitment patterns between river systems. There were statistically significant von Bertalanffy growth model parameters estimated for each of the three rivers based on limited sample sizes. In addition, length frequency distributions between river systems were also significantly different. Further studies will be conducted to review drivers that may explain these inter-river differences.


Asunto(s)
Escamas de Animales/química , Peces/fisiología , Longevidad , Datación Radiométrica/métodos , Animales , Australia , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA