Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(4)2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675916

RESUMEN

DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.


Asunto(s)
Evasión Inmune , Inmunidad Innata , Nucleotidiltransferasas , Humanos , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Transducción de Señal , Virus ADN Tumorales/genética , Virus ADN Tumorales/inmunología , Interacciones Huésped-Patógeno/inmunología
2.
Sci Rep ; 13(1): 14198, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37648722

RESUMEN

Circadian rhythms (CRs) are fundamental biological processes that significantly impact human well-being. Disruption of these rhythms can trigger insufficient neurocognitive development, insomnia, mental disorders, cardiovascular diseases, metabolic dysfunctions, and cancer. The field of chronobiology has increased our understanding of how rhythm disturbances contribute to cancer pathogenesis, and how circadian timing influences the efficacy of cancer treatments. As the circadian clock steadily gains recognition as an emerging factor in tumorigenesis, a thorough and comprehensive multi-omics analysis of CR genes/proteins has never been performed. To shed light on this, we performed, for the first time, an integrated data analysis encompassing genomic/transcriptomic alterations across 32 cancer types (n = 10,918 tumors) taken from the PanCancer Atlas, unfavorable prognostic protein analysis, protein-protein interactomics, and shortest distance score pathways to cancer hallmark phenotypes. This data mining strategy allowed us to unravel 31 essential CR-related proteins involved in the signaling crossroad between circadian rhythms and cancer. In the context of drugging the clock, we identified pharmacogenomic clinical annotations and drugs currently in late phase clinical trials that could be considered as potential cancer therapeutic strategies. These findings highlight the diverse roles of CR-related genes/proteins in the realm of cancer research and therapy.


Asunto(s)
Relojes Circadianos , Neoplasias , Humanos , Relojes Circadianos/genética , Multiómica , Neoplasias/genética , Ritmo Circadiano/genética , Carcinogénesis
3.
J Vis Exp ; (172)2021 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-34223839

RESUMEN

Zebrafish larval xenografts are being widely used for cancer research to perform in vivo and real-time studies of human cancer. The possibility of rapidly visualizing the response to anti-cancer therapies (chemo, radiotherapy, and biologicals), angiogenesis and metastasis with single cell resolution, places the zebrafish xenograft model as a top choice to develop preclinical studies. The zebrafish larval xenograft assay presents several experimental advantages compared to other models, but probably the most striking is the reduction of size scale and consequently time. This reduction of scale allows single cell imaging, the use of a relatively low number of human cells (compatible with biopsies), medium-high-throughput drug screenings, but most importantly enables a significant reduction of the time of the assay. All these advantages make the zebrafish xenograft assay extremely attractive for future personalized medicine applications. Many zebrafish xenograft protocols have been developed with a wide diversity of human tumors; however, a general and standardized protocol to efficiently generate zebrafish larval xenografts is still lacking. Here we provide a step-by-step protocol, with tips to generate xenografts and guidelines for tumor behavior analysis, whole-mount immunofluorescence, and confocal imaging quantification.


Asunto(s)
Neoplasias , Pez Cebra , Animales , Xenoinjertos , Humanos , Larva , Trasplante Heterólogo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Commun ; 12(1): 1156, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608544

RESUMEN

Cancer immunoediting is a dynamic process of crosstalk between tumor cells and the immune system. Herein, we explore the fast zebrafish xenograft model to investigate the innate immune contribution to this process. Using multiple breast and colorectal cancer cell lines and zAvatars, we find that some are cleared (regressors) while others engraft (progressors) in zebrafish xenografts. We focus on two human colorectal cancer cells derived from the same patient that show contrasting engraftment/clearance profiles. Using polyclonal xenografts to mimic intra-tumor heterogeneity, we demonstrate that SW620_progressors can block clearance of SW480_regressors. SW480_regressors recruit macrophages and neutrophils more efficiently than SW620_progressors; SW620_progressors however, modulate macrophages towards a pro-tumoral phenotype. Genetic and chemical suppression of myeloid cells indicates that macrophages and neutrophils play a crucial role in clearance. Single-cell-transcriptome analysis shows a fast subclonal selection, with clearance of regressor subclones associated with IFN/Notch signaling and escaper-expanded subclones with enrichment of IL10 pathway. Overall, our work opens the possibility of using zebrafish xenografts as living biomarkers of the tumor microenvironment.


Asunto(s)
Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/metabolismo , Evasión Inmune , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Xenoinjertos , Proteínas de Homeodominio/genética , Humanos , Inmunidad Innata , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Pez Cebra
5.
Science ; 365(6452)2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31371581

RESUMEN

The canine transmissible venereal tumor (CTVT) is a cancer lineage that arose several millennia ago and survives by "metastasizing" between hosts through cell transfer. The somatic mutations in this cancer record its phylogeography and evolutionary history. We constructed a time-resolved phylogeny from 546 CTVT exomes and describe the lineage's worldwide expansion. Examining variation in mutational exposure, we identify a highly context-specific mutational process that operated early in the cancer's evolution but subsequently vanished, correlate ultraviolet-light mutagenesis with tumor latitude, and describe tumors with heritable hyperactivity of an endogenous mutational process. CTVT displays little evidence of ongoing positive selection, and negative selection is detectable only in essential genes. We illustrate how long-lived clonal organisms capture changing mutagenic environments, and reveal that neutral genetic drift is the dominant feature of long-term cancer evolution.


Asunto(s)
Evolución Clonal/genética , Enfermedades de los Perros/clasificación , Enfermedades de los Perros/genética , Tumores Venéreos Veterinarios/clasificación , Tumores Venéreos Veterinarios/genética , Animales , Enfermedades de los Perros/epidemiología , Perros , Exosomas , Expresión Génica , Mutagénesis , Filogenia , Selección Genética , Tumores Venéreos Veterinarios/epidemiología
6.
Elife ; 52016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27185408

RESUMEN

Canine transmissible venereal tumour (CTVT) is a clonally transmissible cancer that originated approximately 11,000 years ago and affects dogs worldwide. Despite the clonal origin of the CTVT nuclear genome, CTVT mitochondrial genomes (mtDNAs) have been acquired by periodic capture from transient hosts. We sequenced 449 complete mtDNAs from a global population of CTVTs, and show that mtDNA horizontal transfer has occurred at least five times, delineating five tumour clades whose distributions track two millennia of dog global migration. Negative selection has operated to prevent accumulation of deleterious mutations in captured mtDNA, and recombination has caused occasional mtDNA re-assortment. These findings implicate functional mtDNA as a driver of CTVT global metastatic spread, further highlighting the important role of mtDNA in cancer evolution.


Asunto(s)
Enfermedades de los Perros/genética , Variación Genética , Mitocondrias/genética , Recombinación Genética , Selección Genética , Tumores Venéreos Veterinarios/genética , Animales , ADN Mitocondrial/química , ADN Mitocondrial/genética , Perros , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA