Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38881245

RESUMEN

This study determines the functional role of the plant ultraviolet-B radiation (UV-B) photoreceptor, UV RESISTANCE LOCUS 8 (UVR8) under natural conditions using a large-scale 'synchronized-genetic-perturbation-field-experiment'. Laboratory experiments have demonstrated a role for UVR8 in UV-B responses but do not reflect the complexity of outdoor conditions where 'genotype × environment' interactions can mask laboratory-observed responses. Arabidopsis thaliana knockout mutant, uvr8-7, and the corresponding Wassilewskija wild type, were sown outdoors on the same date at 21 locations across Europe, ranging from 39°N to 67°N latitude. Growth and climatic data were monitored until bolting. At the onset of bolting, rosette size, dry weight, and phenolics and glucosinolates were quantified. The uvr8-7 mutant developed a larger rosette and contained less kaempferol glycosides, quercetin glycosides and hydroxycinnamic acid derivatives than the wild type across all locations, demonstrating a role for UVR8 under field conditions. UV effects on rosette size and kaempferol glycoside content were UVR8 dependent, but independent of latitude. In contrast, differences between wild type and uvr8-7 in total quercetin glycosides, and the quercetin-to-kaempferol ratio decreased with increasing latitude, that is, a more variable UV response. Thus, the large-scale synchronized approach applied demonstrates a location-dependent functional role of UVR8 under natural conditions.

2.
Food Res Int ; 169: 112826, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254402

RESUMEN

Sugar levels in grape berries are necessary for wine production but also, they are the main driver of most ripening processes. Sugar levels are very responsive to canopy and crop load adjustments. The aim of this study is to test the effect of different levels of defoliation and cluster thinning on grape ripening and wine composition. 'Cabernet sauvignon' grapevines (Vitis vinifera L.) were subjected to defoliation (keeping 100 %, 66 % and 33 % of the leaves) and fruit thinning treatments (keeping 100 %, 66 % and 33 % of the clusters) combined in a factorial design. The experiment was repeated for 2 consecutive seasons (2017 and 2018) and the plants were left untreated for a third season (2019) to observe the carry-over effects of the treatments. The treatments implied precise adjustments of leaf and cluster numbers. However, the proportion of leaf area to fruit mass tended to compensate each other and interact resulting in smaller differences in leaf area or fruit mass by harvest. Berry mass was strongly reduced by defoliation even in the subsequent season where no defoliation was applied. Berry ripening indicators (soluble solids, acidity and anthocyanin levels) were also more affected by defoliation than fruit thinning. Anthocyanin profile was shifted to a higher proportion of Malvidin-derived anthocyanins for defoliated vines and lower proportion of Malvidin-derived anthocyanins in the case of thinned vines. However, when it came down to wine, the physicochemical parameters as well as the aroma profile were more affected by cluster thinning. There was a clear relationship between sugar levels of the unfermented must and many wine-aroma compounds. Green aromas (2-isobutyl-3-methoxypyrazine, hexanol and cis-3-Hexen-1-ol) were among those presenting a negative correlation to must sugar whereas other compounds like Isobutyric acid, Benzyl alcohol, 1-Octen-3-ol and γ-Nonalactone had a positive correlation. This study reveals a higher level of complexity of source sink relations where leaves and clusters do not only act as a source and a sink of carbon, respectively. Therefore, the results of this study should be considered before making comparisons of leaf area to fruit mass ratios across different vine-growing systems.


Asunto(s)
Vitis , Vino , Flavonoides/análisis , Antocianinas/análisis , Frutas/química , Odorantes , Azúcares/análisis , Vitis/química
3.
PLoS One ; 17(5): e0267607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35588121

RESUMEN

Weather is the most important driver of crop development. However, spatial variability in weather makes it hard to obtain reliable high resolution datasets across large areas. Most growers rely on data from a single station that can be up to 50km away to make decisions about irrigation, pest management and penology-associated cultural practices at the block level. In this regard, we hypothesize that kriging a large network of weather stations can improve thermal time data quality compared to using the closest station. This study aims to explore the spatial variability in California's Central Valley and what is the relationship between the density of weather stations used and the error in the measurement of temperature related metrics and derived models. For this purpose, we used temperature records from January 1st 2020 to March 1st 2021 collected by the California Irrigation Management Information System (CIMIS) and a system of 731 weather stations placed above the canopy of trees in commercial orchards (in-orchard). We observed large discrepancies (>300 GDDTb0) in thermal time accumulation between using an interpolation of all stations available and just using the closest CIMIS station. Our data suggests these differences are not systematic bias but true differences in mesoclimate. Similar results were observed for chill accumulation in areas especially prone to not meeting pistachio chill requirements where the discrepancies between using the site-specific in-orchard weather station network and not using them were up to 10 CP. The use of this high resolution network of weather stations revealed spatial patterns in grape, almond, pistachio and pests phenology not reported before. Whereas previous studies have been focused on predictions at the county or state or regional level, our data suggests that a finer resolution can result in major improvements in the quality of data crucial for crop decision making.


Asunto(s)
Control de Plagas , Tiempo (Meteorología) , California , Temperatura
4.
Food Chem ; 371: 131163, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34583184

RESUMEN

Wine final color, taste and aroma are closely related to the accumulation of secondary metabolites that may be affected by deficit irrigation applied in viticulture. A two-year study was conducted to assess the different fractions of crop evapotranspiration (ETc) irrigation replacement on wine composition, addressing the analysis of flavonoids and volatiles under context of global warming. Irrigating with 100% ETc (full grapevine demand) enhanced wine hue, antioxidant capacity, and some aromas; however, it came with a diminution of flavonoids and a less stable flavonoid profile. Replacing 25 and 50% ETc in wine grape improved wine color intensity, concentration of flavonoids, and shifted the aromatic profiles. These treatments increased some terpenes and esters which may enhance the desirable aromas for Cabernet Sauvignon, and decreased C6 alcohols related to unpleasant ones. Therefore, despite the warming trends in Mediterranean climates, 100% ETc irrigation would be not advisable to improve or maintain wine quality, and 50% ETc was sufficient.


Asunto(s)
Vitis , Vino , Antocianinas/análisis , Frutas/química , Fenoles/análisis , Vino/análisis
5.
Front Plant Sci ; 12: 712622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539704

RESUMEN

Climate change models predict lower precipitation and higher air temperatures that will negatively affect viticultural regions. Irrigation of vineyards will be crucial for mitigating abiotic stress during the growing season. However, the environmental impact of irrigation requires consideration for ensuring its sustainability in the future. We evaluated the standard irrigation practices on grapevine water use efficiency, berry flavonoid composition, vineyard water footprint, and arbuscular mycorrhizal fungi-grapevine symbiosis in two seasons with contrasting amounts of precipitation. The irrigation treatments consisted of weekly replacement of 25, 50, and 100% of crop evapotranspiration (ETc) during two growing seasons. Irrigation in grapevine vineyards mitigated the water scarcity when precipitation during the dormant season was not sufficient. The results provided field data supporting that despite the low rainfall recorded in one of the seasons, increasing the amount of irrigation was not advised, and replacing 50% ETc was sufficient. In this treatment, berry composition was improved with increased contents of total soluble solids, anthocyanins, and flavonols, and a stable flavonoid profile without an economic decrease in yield. In addition, with 50% ETc, the mycorrhizal symbiosis was not compromised and water resources were not highly impacted. Altogether, our results provide fundamental knowledge for viticulturists to design an appropriate irrigation schedule under the future warming scenarios with minimal environmental impact in semi-arid regions facing warming trends.

6.
Front Plant Sci ; 12: 695319, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34381481

RESUMEN

The grapevine (Vitis vinifera L.) is managed to balance the ratio of leaf area (source) to fruit mass (sink). Over cropping in the grapevine may reveal itself as spontaneous fruit abortion, delayed ripening, or as alternate bearing. The aim of this work was to study the same season and carry-over effects of manipulating source to sink ratios on grapevine phenology, leaf gas exchange, yield components, berry soluble solids accumulation, and reserve carbohydrate and soluble sugar concentration in roots. Cabernet Sauvignon grapevines were subjected to defoliation (33, 66, and 100% of the leaves retained) and fruit removal treatments (33, 66, and 100% of clusters retained) arranged in a factorial design. Results from two seasons of source-sink manipulations were substantially different. In both seasons defoliation treatments affected season-long net carbon assimilation (A N ) and stomatal conductance (g s ) where the less leaves were retained, the greater the A N and g s , and fruit removal had no impact on leaf gas exchange. In the first season, leaf area to fruit mass was hardly related to berry soluble solids and in the second season they were strongly correlated, suggesting a degree of acclimation. Defoliation treatments had great impacts on berry size, berries per cluster, and total soluble solids in both years. Fruit removal treatments only had effects on berry mass and berries per cluster in the first season, and only on berry soluble solids in the second. The predominant effect of defoliation (carbon starvation) cascaded onto reducing root starch content, root mass and delaying of veraison and leaf senescence, as well as harvest which was delayed up to 9 weeks with 33% of the leaves retained. In a third season, where grapevines grew without treatments, defoliation treatments had resultant carryover effects, including reduced leaf area, number of berries per cluster, clusters per vine, and yield, but not on leaf gas exchange dependent on previous seasons' severity of defoliation. Balancing source-to-sink ratio is crucial to obtain an adequate speed of ripening. However, this was the culmination of a more complex whole-plant regulation where the number of leaves (source strength) outweighed the effects of fruits (sink strength).

7.
Front Plant Sci ; 12: 633600, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33692817

RESUMEN

Majority of viticulture regions are located in mid-latitudes characterized by weather variability and stressful environments relying on irrigation for mitigating environmental stress during the growing season and to ensure a profitable yield. The aim of this study was to characterize the response of grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) to different applied water amounts based on the replacement of fractions of crop evapotranspiration (ETc) during two growing seasons with contrasting precipitation patterns. The experiment consisted of three irrigation treatments based on the weekly replacement of 25, 50, and 100% of ETc. Grapevine stem water potential decreased during the growing season reaching its lowest value (-1.5 and -1.2 MPa, respectively) at harvest in the more stressed vines (25 and 50% ETc). Leaf gas exchange variables were measured during the two seasons and 100% ETc had the highest rates of photosynthesis and stomatal conductance and better instantaneous water use efficiency, also resulting in higher leaf chlorophyll and carotenoid content. Mineral nutrient content for nitrogen and potassium increased linearly with the increase in applied water. At harvest, no differences were observed in the number of clusters per vine; however, the 25% ETc had the lowest berry size and yield per vine with no difference in sugar content of berry. Conversely, sugar allocation to reserve organs was highly affected by applied water leading to different shoot to root biomass partitioning, where shoot:root ratio, leaf non-structural carbohydrates, and photosynthetic pigments increased with greater applied water. Likewise sucrose:N ratio and root non-structural carbohydrates decreased with the lower applied water. Altogether, carbon allocation between the source and sink organs likely controlled the response of grapevines to water deficits in a hot climate, and replacing 50% ETc was sufficient to sustain the grapevine performance given the enhancement of sugar transport, which could slow down the detrimental effect of water deficits on yield.

8.
Food Chem ; 343: 128447, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33131953

RESUMEN

Leaf removal (LR), shoot thinning (ST) and their combination (LRST) are known to increase berry solar exposure affecting berry composition and consequently improving wine quality and antioxidant properties. We hypothesized that LR, ST or their combination (LRST) would affect flavonoid content during berry ripening by means of changes of the berry microclimate (light and temperature) as well as wine composition, quality, and antioxidant properties. Thermal time and sum of light intensity thresholds were different to achieve the maximum berry anthocyanin and flavonol contents. ST mostly affected wine characteristics by increasing alcoholic content, acidity, hue and phenolic substances. Wine antioxidant capacity decreased in ST wines likely by decreases in catechin and quercetin contents. ST and LRST increased proanthocyanidin polymerization and decreased monomeric flavan-3-ols, which may reduce wine bitterness and enhance astringency. Therefore, the management of canopy should take into account the warming trends in viticulture regions, rather than being applied preemptively.


Asunto(s)
Clima , Frutas/química , Luz , Hojas de la Planta , Temperatura , Vitis/química , Vitis/efectos de la radiación , Vino/análisis , Gusto
9.
Front Plant Sci ; 11: 579192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33240297

RESUMEN

Rising temperatures in most agricultural regions of the world are associated with a higher incidence of extreme weather events such as heat waves. We performed an experiment to mitigate the impact of heat waves and exposure of berries in grapevine (Vitis vinifera cv. "Cabernet Sauvignon") with untreated vines (Exposed) or with fruit-zone partial shading (Shaded) under 40 and 80% replacement of crop evapotranspiration (ET c ) with sustained deficit irrigation in a factorially arranged experiment. The trial was performed in a vineyard with vertically shoot positioned trellis with a row orientation that concentrated solar radiation exposure on the southwest aspect of the fruit zone. Leaf stomatal conductance (g s ) and net carbon assimilation (A N ) were significantly lower in shaded leaves under partial fruit-zone shading that resulted in lower pruning mass for Shaded treatments. Stem water potential (Ψ stem ) responded to a large extent to increased irrigation. However, grapevines with partial fruit-zone shading had transiently better water status under 40% ET c . Cluster maximum temperatures were 3.9°C greater in Exposed grapevines. Exposed clusters had transiently lower acidity and higher pH. However, Exposed clusters on 40% ET c had higher total soluble solids (TSS). The experimental vineyard suffered a 4-day heat wave 21 days before harvest, resulting in 25% of the clusters being damaged in Exposed treatment, regardless of irrigation amount. Furthermore, berries in Exposed treatments suffered a great loss of anthocyanins and flavonols even if they were not damaged by direct solar exposure. The pre-planting decision of using a vertically shoot positioned trellis that concentrated solar radiation on the Southwest aspect offered mild protection in a hot climate region with a sunny growing season with extreme heat events during the execution of study. The extreme conditions under which this study was conducted are not unusual, and have become more expected. Our work provided evidence of the vulnerability of grape berry to heat waves and exposure during heat wave events and possible protection methods to mitigate these effects in situ in context of climate change.

10.
Front Plant Sci ; 11: 790, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655596

RESUMEN

The relationships between differences in plant water status, induced by spatial variability in soil texture, and the changes in berry and wine composition were investigated in an irrigated Cabernet Sauvignon (Vitis vinefera L.) vineyard for 2 years. A stratified and an equidistant grid were overlaid on the vineyard to characterize the soil texture by proximal sensing, soil sampling, and grapevine physiological and berry chemical development. Based on the mid-day stem water potential (Ψ stem ) integrals, the vineyard was divided into two functional homogenous zones: Zone 1 with higher water stress and Zone 2 with lower water. Zone 1 consistently had lower Ψ stem , net carbon assimilation, and stomatal conductance in both years. Berry weight and titratable acidity were lower in Zone 1 at harvest. Zone 2 reached 26 and 24°Bx total soluble solids (TSS) at harvest in Years 1 and 2, respectively, with higher TSS values of 30 and 27°Bx in Zone 1. Ravaz index did not vary spatially. Fruits were harvested differentially in both years and vinified separately from the two zones. In Year 1, all berry skin anthocyanin derivatives, tri-, di- hydroxylated, and total anthocyanins concentrations were higher in Zone 2. However, in Year 2, only malvidin, tri-hydroxylated, and total anthocyanins were higher in Zone 1. There were no differences in wine flavonoids in Year 2 when harvest commenced earlier. In both years, Ψ stem , berry weight, and TSS were directly related to soil bulk electrical conductivity (EC). Our results indicated vineyard variability stemmed from soil texture that affected long-term plant water status which does not affect spatial variability of Ravaz Index. In conclusion, our work provides fundamental knowledge about the applicability of soil bulk EC sensing in the vineyards, and its potential directional utilization by connecting proximal soil sensing to spatial distribution of whole-plant physiological performance together with berry and wine chemistry.

11.
Front Plant Sci ; 11: 931, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714350

RESUMEN

In commercial wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile. Three experiments were conducted in Oakville, CA, USA. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together.

12.
Front Plant Sci ; 10: 10, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30766542

RESUMEN

Exposure to solar radiation is a determining factor of grape composition. Flavonol synthesis is upregulated by solar radiation leaving a fingerprint on flavonol profile. This study aimed to test the factors affecting flavonol accumulation and profile and their potential as an indicator to assess the overall exposure of red wine grape berry to solar radiation. We performed three experiments to study the response of flavonol accumulation and profile to (1) three different solar radiation exclusion treatments during berry development; (2) canopy porosity and leaf area index (LAI); and (3) spatial variability of water status, vigor and ripening and cultural practices in commercial vineyards. Results showed a strong relationship between global radiation, inverse dormant pruning weights or canopy porosity (inversely proportional to LAI) and % kaempferol or % quercetin. Furthermore, the increase in concentration of the above two flavonols was associated with a reduction of % myricetin. Total flavonol content, % kaempferol, % quercetin, and % myricetin had significant correlations with inverse dormant pruning weights, but these were less sensitive to over-ripening or water deficits. Flavonol profile was associated to site hydrology (wetness index) through changes in vigor, and to LAI; and responded to shoot thinning or fruit-zone leaf removal. These results support the reliability of the flavonol profile as an assessment parameter for studies aiming to discuss canopy architecture or the effect of solar radiation on grapevine berries.

13.
J Agric Food Chem ; 67(9): 2437-2448, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30721055

RESUMEN

Grapevine red blotch virus (GRBV) is suspected to alter berry ripening and chemistry. This study performed a physiological characterization of GRBV infected grapevines with attention to the factors leading to chemical changes during ripening of Cabernet Sauvignon in two rootstocks, 110R and 420A. RB(+) grapevines had transiently lower net photosynthesis; however, berry total soluble solids (TSS) accumulation was consistently reduced in the two years of study. Accumulation of anthocyanins and loss of titratable acidity and proanthocyanins were also delayed in RB(+) plants. However, the comparison of samples with the same TSS led to lower pH and anthocyanins content. The reduction in carbon import into berries under mild and transient reductions in carbon fixation suggested an impairment of translocation mechanisms with RB(+), leading into a desynchronization of ripening-related processes.


Asunto(s)
Carbono/metabolismo , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Geminiviridae , Enfermedades de las Plantas/virología , Vitis/virología , Antocianinas/metabolismo , Ciclo del Carbono/fisiología , Frutas/química , Concentración de Iones de Hidrógeno , Fotosíntesis , Vitis/fisiología
14.
J Agric Food Chem ; 65(49): 10693-10702, 2017 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-29141407

RESUMEN

The incidence of solar radiation on red-skinned grapes can promote the synthesis of flavonoids desirable for wine production, but elevated temperature may impair their accumulation. We performed a shade cloth trial covering the fruit zone (from pepper-corn size to maturity) with four polyethylene 1 m curtains with different optical properties (20% shading factor Pearl colored and 40% shading factor Aluminet, Blue, and Black colored) and a Control with no cover. Cluster temperature was 3.7 °C lower on the Southwest side in Black-40% clusters during the warmest part of the day compared to Control. Results indicated a lower berry weight under the Aluminet-40%. Berries under the nets often had significantly lower pH and higher TA than Control, but only the Black-40% were significant at harvest. Black-40% had higher values of anthocyanins than Control toward the last weeks of development. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased HPLC; and proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins and flavonol contents were lower in Black-40% before veraison and the first part of ripening, respectively. However, their contents in Control decreased toward the end of ripening to a point where any net was different from Control. Anthocyanin and flavonol profiles were richer in 3', 4', 5' hydroxylated forms. Proanthocyanidin chain length was not affected while small changes were observed in the proportion of terminal catechin/epicatechin and in seed galloylation in response to treatments. Results show that shade cloths may efficiently palliate temperature spikes, especially the last weeks before harvest, while transmitting enough radiation into the fruit zone to achieve a better grape composition compared to uncovered grapes.


Asunto(s)
Flavonoides/metabolismo , Aromatizantes/metabolismo , Frutas/química , Compuestos Orgánicos/metabolismo , Vitis/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Cambio Climático , Color , Flavonoides/química , Aromatizantes/química , Alimentos , Análisis de los Alimentos/métodos , Humanos , Luz , Compuestos Orgánicos/química , Radiación , Semillas/química , Semillas/metabolismo , Vitis/química , Vino/análisis
15.
Plant Cell Environ ; 40(11): 2790-2805, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28792065

RESUMEN

A 2-year study explored metabolic and phenotypic plasticity of sun-acclimated Vitis vinifera cv. Pinot noir leaves collected from 12 locations across a 36.69-49.98°N latitudinal gradient. Leaf morphological and biochemical parameters were analysed in the context of meteorological parameters and the latitudinal gradient. We found that leaf fresh weight and area were negatively correlated with both global and ultraviolet (UV) radiation, cumulated global radiation being a stronger correlator. Cumulative UV radiation (sumUVR) was the strongest correlator with most leaf metabolites and pigments. Leaf UV-absorbing pigments, total antioxidant capacities, and phenolic compounds increased with increasing sumUVR, whereas total carotenoids and xanthophylls decreased. Despite of this reallocation of metabolic resources from carotenoids to phenolics, an increase in xanthophyll-cycle pigments (the sum of the amounts of three xanthophylls: violaxanthin, antheraxanthin, and zeaxanthin) with increasing sumUVR indicates active, dynamic protection for the photosynthetic apparatus. In addition, increased amounts of flavonoids (quercetin glycosides) and constitutive ß-carotene and α-tocopherol pools provide antioxidant protection against reactive oxygen species. However, rather than a continuum of plant acclimation responses, principal component analysis indicates clusters of metabolic states across the explored 1,500-km-long latitudinal gradient. This study emphasizes the physiological component of plant responses to latitudinal gradients and reveals the physiological plasticity that may act to complement genetic adaptations.


Asunto(s)
Clima , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Vitis/anatomía & histología , Vitis/fisiología , Absorción de Radiación , Antioxidantes/metabolismo , Biomasa , Carotenoides/análisis , Europa (Continente) , Geografía , Metaboloma , Fenoles/análisis , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Análisis de Componente Principal , Rayos Ultravioleta , Vitis/metabolismo , Vitis/efectos de la radiación , Xantófilas/análisis , alfa-Tocoferol/análisis
16.
J Agric Food Chem ; 65(26): 5255-5265, 2017 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-28602091

RESUMEN

Plant water stress affects grape (Vitis vinifera L. cv. Cabernet Sauvignon) berry composition and is variable in space due to variations in the physical environment at the growing site. We monitored the natural variability of grapevine water stress by stem water potential (Ψstem) and leaf gas exchange in an equi-distant grid in a commercial vineyard. Spatial differences were measured and related to topographical variation by modeling. Geospatial analysis and clustering allowed researchers to differentiate the vineyard block into two distinct zones having severe and moderate water stress where it varied by 0.2 MPa. Differences in stem water potential affected stomatal conductance, net carbon assimilation, and intrinsic water use efficiency that were different in all measurement dates. The two zones were selectively sampled at harvest for measurements of berry chemistry. The water status zones did not affect berry mass or yield per vine. Significant difference in total soluble solids was observed (3.56 Brix), and in titratable acidity, thus indicating a direct effect of water stress on ripening acceleration. Berry skin flavonol and anthocyanin composition and concentration were measured by C18 reversed-phased high-performance liquid chromatography (HPLC). The anthocyanins were most affected by the two water stress zones. The dihydroxylated anthocyanins were more affected than trihydroxylated; therefore, the ratio of the two forms increased. Flavonols were different in total amounts, but hydroxylation patterns were not affected. Proanthocyanidin isolates were characterized by acid catalysis in the presence of excess phloroglucinol followed by reversed-phase HPLC. Proanthocyanidins showed the least significant difference, although (+)-catechin terminal subunits were important predictors in a partial least square model used to summarize the multivariate relationships, predicting Ψstem or the management zone. The results provide fundamental information on vineyard water status to discriminate harvest or direction to vineyard operators to modify irrigation management to equilibrate berry composition at harvest.


Asunto(s)
Flavonoides/química , Frutas/química , Extractos Vegetales/química , Vitis/química , Agua/análisis , Frutas/metabolismo , Vitis/metabolismo , Agua/metabolismo
17.
J Agric Food Chem ; 64(46): 8722-8734, 2016 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-27794599

RESUMEN

Mature berries of Pinot Noir grapevines were sampled across a latitudinal gradient in Europe, from southern Spain to central Germany. Our aim was to study the influence of latitude-dependent environmental factors on the metabolite composition (mainly phenolic compounds) of berry skins. Solar radiation variables were positively correlated with flavonols and flavanonols and, to a lesser extent, with stilbenes and cinnamic acids. The daily means of global and erythematic UV solar radiation over long periods (bud break-veraison, bud break-harvest, and veraison-harvest), and the doses and daily means in shorter development periods (5-10 days before veraison and harvest) were the variables best correlated with the phenolic profile. The ratio between trihydroxylated and monohydroxylated flavonols, which was positively correlated with antioxidant capacity, was the berry skin variable best correlated with those radiation variables. Total flavanols and total anthocyanins did not show any correlation with radiation variables. Air temperature, degree days, rainfall, and aridity indices showed fewer correlations with metabolite contents than radiation. Moreover, the latter correlations were restricted to the period veraison-harvest, where radiation, temperature, and water availability variables were correlated, making it difficult to separate the possible individual effects of each type of variable. The data show that managing environmental factors, in particular global and UV radiation, through cultural practices during specific development periods, can be useful to promote the synthesis of valuable nutraceuticals and metabolites that influence wine quality.


Asunto(s)
Vitis/química , Vitis/metabolismo , Altitud , Antocianinas/análisis , Antocianinas/metabolismo , Ecosistema , Europa (Continente) , Flavonoles/análisis , Flavonoles/metabolismo , Frutas/química , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/efectos de la radiación , Polifenoles/análisis , Polifenoles/metabolismo , Rayos Ultravioleta , Vitis/crecimiento & desarrollo , Vitis/efectos de la radiación
18.
Plant Cell Physiol ; 55(11): 1925-36, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25231967

RESUMEN

UV-B radiation and water deficit may trigger flavonol and anthocyanin biosynthesis in plant tissues. In addition, previous research has showed strong qualitative effects on grape berry skin flavonol and anthocyanin profiles in response to UV-B and water deficit. The aim of this study is to identify the mechanisms leading to quantitative and qualitative changes in flavonol and anthocyanin profiles, in response to separate and combined UV-B and water deficit. Grapevines (Vitis vinifera L. cv. Tempranillo) were exposed to three levels of UV-B radiation (0, 5.98 and 9.66 kJ m(-2) day(-1)) and subjected to two water regimes. A strong effect of UV-B on flavonol and anthocyanin biosynthesis was found, resulting in an increased anthocyanin concentration and a change in their profile. Concomitantly, two key biosynthetic genes (FLS1 and UFGT) were up-regulated by UV-B, leading to increased flavonol and anthocyanin skin concentration. Changes in flavonol and anthocyanin composition were explained to a large extend by transcript levels of F3'H, F3'5'H and OMT2. A significant interaction between UV-B and water deficit was found in the relative abundance of 3'4' and 3'4'5' substituted flavonols, but not in their anthocyanin homologues. The ratio between 3'4'5' and 3'4' substituted flavonols was linearly related to the ratios of F3'5'H and FLS1 transcription, two steps up-regulated independently by water deficit and UV-B radiation, respectively. Our results indicate that changes in flavonol profiles in response to environmental conditions are not only a consequence of changes in the expression of flavonoid hydroxylases; but also the result of the competition of FLS, F3'5'H and F3'H enzymes for the same flavonol substrates.


Asunto(s)
Antocianinas/metabolismo , Flavonoles/metabolismo , Vitis/genética , Vitis/metabolismo , Antocianinas/análisis , Antocianinas/genética , Flavonoles/análisis , Flavonoles/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Análisis de Componente Principal , Transcriptoma , Rayos Ultravioleta , Vitis/efectos de la radiación , Agua/metabolismo
19.
Mar Environ Res ; 69(5): 345-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20096926

RESUMEN

The potential threat to seagrasses of the invasive algae, Gracilaria vermiculophylla was assessed through metabolic indicators under experimental conditions. Net leaf photosynthesis (LNP) and dark respiration (LDR) were measured from leaf segments of Zostera marina shoots under different loads of G. vermiculophylla (control, low 2.2kg FW m(-2) and high 4kg FW m(-2)) in mesocosm experiments separated in tanks at four temperatures (19, 23.5, 26 and 30 degrees C). LNP decreased in the presence of the high density G. vermiculophylla mat (25% on average), being the most severe reductions at 30 degrees C (35% less in high). LDR did not respond significantly to differences in algal biomass, whereas a progressive increase was found with increasing temperatures (3.4 times higher at 30 degrees C than at 19 degrees C). Sulphide in porewater was measured weekly in order clarify the role of sediment conditions on seagrass metabolism, and increased both with algal biomass (29% in high) and temperature (from 0.5mM at 26 degrees C to 2.6mM at 30 degrees C), but changes in LNP and LDR were not correlated with sulphide concentrations. Seagrass survival rates showed decreasing trend with algal biomass at all the temperatures (from 74% to 21% survival). G. vermiculophylla showed harmful effects on Z. marina metabolism and survival with synergistic effects of temperature suggesting greater impact of invasive species under future higher water temperatures.


Asunto(s)
Gracilaria/fisiología , Hojas de la Planta/fisiología , Zosteraceae/metabolismo , Animales , Fotosíntesis , Densidad de Población , Temperatura , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA