Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39020065

RESUMEN

This study aimed to evaluate the effects of Protium heptaphyllum fruit essential oil (PHEO) on the physiology of silver catfish (Rhamdia quelen) during anesthesia and recovery, through studying echocardiograms, oxidative status, and metabolic parameters. Three experiments were performed: (1) 50 silver catfish juveniles were submitted to anesthesia and recovery tests with 300, 400, 500, 600, and 700 mg L-1 of PHEO. (2) Echocardiogram analysis was performed in anesthetized and non-anesthetized fish. (3) Biochemical parameters were evaluated at 0, 30, 60, and 120 min of recovery after being anesthetized for 3 min with 600 mg L-1 PHEO. Times to sedation and deep anesthesia were reduced with PHEO increasing concentrations. The echocardiogram showed a higher cardiac rate in anesthetized fish. Plasma glucose levels increased in control fish through recovery time, but anesthetized fish showed lower levels than controls at 120 min of recovery. Metabolic parameters such as plasma and hepatic glucose did not show changes considering the recovery time of up to 120 min. Hepatic glycogen, lactate, and triglycerides reduced their levels over recovery times. Fish anesthetized enhanced superoxide dismutase activity and thiobarbituric acid reactive substances levels but decreased reduced glutathione (GSH) levels at 30 min compared to controls. After 60 min, GSH values were significantly higher in anesthetized fish than in controls. These results suggest that PHEO at 600 mg L-1 is an effective anesthetic for the rapid handling of silver catfish, providing stable metabolic parameters and enhanced antioxidant responses during recovery. Echocardiogram analysis confirms the anesthetic effect, supporting PHEO as a viable and efficient option for fish anesthesia in aquaculture. The use of PHEO in aquaculture can enhance fish welfare by reducing stress during handling and transportation, potentially leading to improved growth, health, and survival rates.

2.
Gen Comp Endocrinol ; 335: 114228, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36781023

RESUMEN

This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.


Asunto(s)
Bagres , Animales , Proteínas de Choque Térmico , Proteínas HSP90 de Choque Térmico , Lactatos , ARN Mensajero
3.
Pharmaceutics ; 14(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35890291

RESUMEN

Inflammation is a key feature of atherosclerosis. The inflammatory process is involved in all stages of disease progression, from the early formation of plaque to its instability and disruption, leading to clinical events. This strongly suggests that the use of anti-inflammatory agents might improve both atherosclerosis progression and cardiovascular outcomes. Colchicine, an alkaloid derived from the flower Colchicum autumnale, has been used for years in the treatment of inflammatory pathologies, including Gout, Mediterranean Fever, and Pericarditis. Colchicine is known to act over microtubules, inducing depolymerization, and over the NLRP3 inflammasome, which might explain its known anti-inflammatory properties. Recent evidence has shown the therapeutic potential of colchicine in the management of atherosclerosis and its complications, with limited adverse effects. In this review, we summarize the current knowledge regarding colchicine mechanisms of action and pharmacokinetics, as well as the available evidence on the use of colchicine for the treatment of coronary artery disease, covering basic, translational, and clinical studies.

4.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36613465

RESUMEN

The IL-1 superfamily of cytokines is a central regulator of immunity and inflammation. The family is composed of 11 cytokines (with agonist, antagonist, and anti-inflammatory properties) and 10 receptors, all tightly regulated through decoy receptor, receptor antagonists, and signaling inhibitors. Inflammation not only is an important physiological response against infection and injury but also plays a central role in atherosclerosis development. Several clinical association studies along with experimental studies have implicated the IL-1 superfamily of cytokines and its receptors in the pathogenesis of cardiovascular disease. Here, we summarize the key features of the IL-1 family, its role in immunity and disease, and how it helps shape the development of atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Interleucina-1 , Citocinas , Inflamación
5.
Animals (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828041

RESUMEN

Cortisol is the main glucocorticoid hormone promoting compensatory metabolic responses of stress in teleosts. This hormone acts through genomic and membrane-initiated actions to exert its functions inside the cell. Experimental approaches, using exogenous cortisol administration, confirm the role of this hormone during short (minutes to hours)- and long-term (days to weeks) responses to stress. The role of membrane-initiated cortisol signaling during long-term responses has been recently explored. In this study, Sparus aurata were intraperitoneally injected with coconut oil alone or coconut oil containing cortisol, cortisol-BSA, or BSA. After 3 days of treatment, plasma, liver, and skeletal muscle were extracted. Plasma cortisol, as well as metabolic indicators in the plasma and tissues collected, and metabolism-related gene expression, were measured. Our results showed that artificially increased plasma cortisol levels in S. aurata enhanced plasma glucose and triacylglycerols values as well as hepatic substrate energy mobilization. Additionally, cortisol stimulated hepatic carbohydrates metabolism, as seen by the increased expression of metabolism-related genes. All of these responses, observed in cortisol-administered fish, were not detected by replicating the same protocol and instead using cortisol-BSA, which exclusively induces membrane-initiated effects. Therefore, we suggest that after three days of cortisol administration, only genomic actions are involved in the metabolic responses in S. aurata.

6.
Artículo en Inglés | MEDLINE | ID: mdl-32781297

RESUMEN

This study aimed to verify whether dietary quercetin protects against the detrimental effects induced by oxytetracycline (OTC) administration in silver catfish (Rhamdia quelen). Fish were divided into different experimental groups that received OTC and/or quercetin, either during 14 or 21 days. To determine the endocrine system stress response, we have measured the brain mRNA expression levels of corticotropin-releasing hormone (crh), proopiomelanocortins (pomca and pomcb) and some of the pituitary hormones (growth hormone [gh], somatolactin [sl], and prolactin [prl]). We have also quantified the levels of cortisol as well as some metabolites (glucose, glycogen, lactate, and triglycerides) in the plasma. Moreover, the enzymatic activity of hexokinase, phosphorylase (active GPase), fructose-biphosphatase (FBP), glycerol-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, and glutamate dehydrogenase (GDH) and gill Na+/K+-ATPase were measured. The results demonstrated that OTC activates the silver catfish stress response by increasing the plasma cortisol and decreasing the glucose levels at 14 and 21 days. Additionally, OTC also altered the fish hepatic metabolic status as demonstrated by an increase in triglycerides levels and the enzymatic activity of both FBP and GDH after 14 days. OTC also stimulated Na+/K+-ATPase activity in the gill after 14 days and altered the hypophyseal expression of gh (at 14 and 21 days) and prl (at 14 days). The co-treatment with 1.5 g of quercetin could prevent most of the alterations caused by OTC, strongly suggesting quercetin as a beneficial compound when added to the fish diet.


Asunto(s)
Bagres/metabolismo , Sistema Endocrino/efectos de los fármacos , Oxitetraciclina/toxicidad , Hormonas Hipofisarias/metabolismo , Quercetina/farmacología , Animales , Antibacterianos/toxicidad , Antioxidantes/farmacología , Dieta , Interacciones Farmacológicas , Femenino , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Branquias/efectos de los fármacos , Branquias/metabolismo , Branquias/patología , Hidrocortisona/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino
7.
Artículo en Inglés | MEDLINE | ID: mdl-31798534

RESUMEN

Teleost fish are exposed to diverse stressors in farming and wildlife conditions during their lifespan. Cortisol is the main glucocorticoid hormone involved in the regulation of their metabolic acclimation under physiological stressful conditions. In this context, increased plasma cortisol is associated with energy substrate mobilization from metabolic tissues, such as liver and skeletal muscle, to rapidly obtain energy and cope with stress. The metabolic actions of cortisol have primarily been attributed to its genomic/classic action mechanism involving the interaction with intracellular receptors, and regulation of stress-responsive genes. However, cortisol can also interact with membrane components to activate rapid signaling pathways. In this work, using the teleost fish gilthead sea bream (Sparus aurata) as a model, we evaluated the effects of membrane-initiated cortisol actions on the early modulation of glucose metabolism. For this purpose, S. aurata juveniles were intraperitoneally administrated with cortisol and with its membrane impermeable analog, cortisol-BSA. After 1 and 6 h of each treatment, plasma cortisol levels were measured, together with glucose, glycogen and lactate in plasma, liver and skeletal muscle. Transcript levels of corticosteroids receptors (gr1, gr2, and mr) and key gluconeogenesis (g6pc and pepck)- and glycolysis (pgam1 and aldo) related genes in the liver were also measured. Cortisol and cortisol-BSA administration increased plasma cortisol levels in S. aurata 1 h after administration. Plasma glucose levels enhanced 6 h after each treatment. Hepatic glycogen content decreased in the liver at 1 h of both cortisol and cortisol-BSA administration, while increased at 6 h due to cortisol but not in response to cortisol-BSA. Expression of gr1, g6pc, pgam1, and aldo were preferentially increased by cortisol-BSA in the liver. Taking all these results in consideration, we suggest that non-canonical cortisol mechanisms contribute to the regulation of the early glucose metabolism responses to stress in S. aurata.

8.
Behav Brain Res ; 376: 112178, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31454673

RESUMEN

Studies using silver catfish (Rhamdia quelen) as experimental models are often applied to screen essential oils (EO) with GABAergic-mediated effects. However, the expression of GABAa receptors in the silver catfish brain remains unknown. Thus, we assessed whether silver catfish express GABAa receptor subunits associated with sedation/anesthetic process and/or neurological diseases. Additionally, we evaluated the brain expression of GABAa receptor subunits in fish sedated with Nectandra grandiflora EO and its isolated compounds, the fish anesthetic (+)-dehydrofukinone (DHF), and dehydrofukinone epoxide (DFX), eremophil-11-en-10-ol (ERM) and selin-11-en-4-α-ol (SEL), which have GABAa-mediated anxiolytic-like effects in mice. The expression of the subunits gabra1, gabra2, gabra3, gabrb1, gabrd and gabrg2 in the silver catfish brain were assessed after a 24h-sedation bath by real time PCR. Since qPCR data rarely describes mechanisms of action, which are usually found through interactions with receptors, we also performed an antagonist-driven experiment using flumazenil (FMZ). Real-time PCR detected the mRNA expression of all targeted genes in R. quelen brain. The expression of gabra1 was decreased in fish sedated with ERM; EO increased gabra2, gabra3, gabrb1 and gabrg2 expression; SEL increased gabrb1, gabrd and gabrg2 expression. EO and compounds DFX, SEL and ERM induced sustained sedation in fish and FMZ-bath prompted the recovery from ERM- and DFX-induced sedation. Our results suggest that the EO, SEL, ERM and DFX sedative effects involve interaction with the GABAergic system. Our findings support the use of the silver catfish as robust and reliable experimental model to evaluate the efficacy of drugs with putative GABAergic-mediated effects.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteínas de Peces/metabolismo , GABAérgicos/farmacología , Aceites Volátiles/farmacología , Receptores de GABA-A/metabolismo , Animales , Bagres , GABAérgicos/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Hipnóticos y Sedantes/aislamiento & purificación , Hipnóticos y Sedantes/farmacología , Lauraceae , Aceites Volátiles/aislamiento & purificación , Hojas de la Planta , ARN Mensajero/metabolismo
9.
Fish Physiol Biochem ; 45(1): 155-166, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30120603

RESUMEN

In teleost fish, stress initiates a hormone cascade along the hypothalamus-pituitary-interrenal (HPI) axis to provoke several physiological reactions in order to maintain homeostasis. In aquaculture, a number of factors induce stress in fish, such as handling and transport, and in order to reduce the consequences of this, the use of anesthetics has been an interesting alternative. Essential oil (EO) of Lippia alba is considered to be a good anesthetic; however, its distinct chemotypes have different side effects. Therefore, the present study aimed to investigate, in detail, the expression of genes involved with the HPI axis and the effects of anesthesia with the EOs of two chemotypes of L. alba (citral EO-C and linalool EO-L) on this expression in silver catfish, Rhamdia quelen. Anesthesia with the EO-C is stressful for silver catfish because there was an upregulation of the genes directly related to stress: slc6a2, crh, hsd20b, hspa12a, and hsp90. In this study, it was also possible to observe the importance of the hsd11b2 gene in the response to stress by handling. The use of EO-C as anesthetics for fish is not recommended, but, the use of OE-L is indicated for silver catfish as it does not cause major changes in the HPI axis.


Asunto(s)
Bagres/fisiología , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Lippia/química , Monoterpenos/farmacología , Aceites de Plantas/farmacología , Monoterpenos Acíclicos , Anestesia/veterinaria , Anestésicos/química , Anestésicos/farmacología , Animales , Sistema Hipotálamo-Hipofisario/fisiología , Monoterpenos/química , Aceites Volátiles/farmacología , Aceites de Plantas/química
10.
Res Vet Sci ; 117: 150-160, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29275218

RESUMEN

The effects of pre-transport handling and addition of essential oil of Myrcia sylvatica (EOMS) during transport on stress pathways activation in Rhamdia quelen were investigated. Fish (n=400, 25.2±2.9g) were captured in production ponds and transferred to 100-L tank (density 100g L-1). After 24h, 10 fish were sampled (before transport group). The remaining fish were placed in plastic bags (n=30 or 32 fish per bag, density 150g L-1) containing 5L of water (control), ethanol (315µLL-1, vehicle) or EOMS (25 or 35µLL-1), in triplicate, transported for 6h and sampled (n=10 animals per group). Indicators of stress and metabolism, as well as mRNA expression of brain hormones were evaluated. Previously, full-length cDNAs, encoding specific corticotropin-releasing hormone (crh) and proopiomelanocortins (pomca and pomcb), were cloned from whole brain of R. quelen. Crh expression increased after 24h of capture and handling, whereas cortisol and glucose plasmatics enhanced their values in the control group. Transport with EOMS reduced plasma cortisol and lactate levels, while ethanol and EOMS groups increased Na+/K+-ATPase gill activity compared to control. Gene expression of crh, pomcb, prolactin and somatolactin mRNAs were lower after transport with EOMS compared to control. EOMS was able to mitigate the stress pathways activation caused by transport, maintaining a balance in body homeostasis. Thus, EOMS is recommended as sedative in procedures as transport and the pre-transport handling requires greater attention and use of tranquilizers.


Asunto(s)
Bagres , Hipnóticos y Sedantes/farmacología , Aceites Volátiles/farmacología , Estrés Fisiológico/efectos de los fármacos , Animales , Bagres/metabolismo , Bagres/fisiología , Branquias , Hidrocortisona , Transportes
11.
PeerJ ; 5: e3975, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29114440

RESUMEN

As other spiny lobsters, Panulirus argus is supposed to use preferentially proteins and lipids in energy metabolism, while carbohydrates are well digested but poorly utilized. The aim of this study was to evaluate the effect of dietary carbohydrate level on digestion and metabolism in the spiny lobster P. argus. We used complementary methodologies such as post-feeding flux of nutrients and metabolites, as well as measurements of α-amylase expression and activity in the digestive tract. Lobsters readily digested and absorbed carbohydrates with a time-course that is dependent on their content in diet. Lobster showed higher levels of free glucose and stored glycogen in different tissues as the inclusion of wheat flour increased. Modifications in intermediary metabolism revealed a decrease in amino acids catabolism coupled with a higher use of free glucose as carbohydrates rise up to 20%. However, this effect seems to be limited by the metabolic capacity of lobsters to use more than 20% of carbohydrates in diets. Lobsters were not able to tightly regulate α-amylase expression according to dietary carbohydrate level but exhibited a marked difference in secretion of this enzyme into the gut. Results are discussed to highlight the limitations to increasing carbohydrate utilization by lobsters. Further growout trials are needed to link the presented metabolic profiles with phenotypic outcomes.

12.
PLoS One ; 11(7): e0158919, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27391425

RESUMEN

Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.


Asunto(s)
Proteínas de Artrópodos , Carnivoría/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Palinuridae , alfa-Amilasas , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Glicosilación , Isoenzimas/biosíntesis , Isoenzimas/genética , Palinuridae/genética , Palinuridae/metabolismo , Proteolisis , alfa-Amilasas/biosíntesis , alfa-Amilasas/genética
13.
Fish Physiol Biochem ; 41(1): 129-38, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25403153

RESUMEN

This study investigated the effects of prolonged exposure of silver catfish (Rhamdia quelen) to the essential oil (EO) of Hesperozygis ringens. Ventilatory rate (VR), stress and metabolic indicators, energy enzyme activities, and mRNA expression of adenohypophyseal hormones were examined in specimens that were exposed for 6 h to 0 (control), 30 or 50 µL L(-1) EO of H. ringens in water. Reduction in VR was observed in response to each treatment, but no differences were found between treatments. Plasma glucose, protein, and osmolality increased in fish exposed to 50 µL L(-1). Moreover, lactate levels increased after exposure to both EO concentrations. Plasma cortisol levels were not changed by EO exposure. Fish exposed to 30 µL L(-1) EO exhibited higher glycerol-3-phosphate dehydrogenase (G3PDH) activity, while exposure to 50 µL L(-1) EO elicited an increase in glucose-6-phosphate dehydrogenase (G6PDH), fructose-biphosphatase (FBP), and 3-hydroxyacyl-CoA-dehydrogenase (HOAD) activities compared with the control group. Expression of growth hormone (GH) only decreased in fish exposed to 50 µL L(-1) EO, while somatolactin (SL) expression decreased in fish exposed to both concentrations of EO. Exposure to EO did not change prolactin expression. The results indicate that GH and SL are associated with energy reorganization in silver catfish. Fish were only slightly affected by 30 µL L(-1) EO of H. ringens, suggesting that it could be used in practices where a reduction in the movement of fish for prolonged periods is beneficial, i.e., such as during fish transportation.


Asunto(s)
Acuicultura/métodos , Bagres/fisiología , Lamiaceae/química , Aceites Volátiles/efectos adversos , Estrés Fisiológico/efectos de los fármacos , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Proteínas Sanguíneas/efectos de los fármacos , Cartilla de ADN/genética , Proteínas de Peces/metabolismo , Fructosa-Bifosfatasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicoproteínas/metabolismo , Hormona del Crecimiento/metabolismo , Hidrocortisona/metabolismo , Concentración Osmolar , Consumo de Oxígeno/efectos de los fármacos , Hormonas Hipofisarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Espectrofotometría/veterinaria , Estrés Fisiológico/fisiología
14.
J Exp Biol ; 215(Pt 5): 853-62, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22323208

RESUMEN

The effects of pelleted diets with different protein composition (fish, squid or soybean meals as main protein sources) on trypsin secretion and expression were studied in the lobster Panulirus argus. Trypsin secretion was shown to be maximal 4 h after ingestion. At this time, fish- and squid-based diets induced trypsin secretion, as well as up-regulation of the major trypsin isoform at the transcription level. While fish- and squid-based diets elicited a prandial response, soybean-based diet failed to stimulate the digestive gland to secrete trypsin into the gastric fluid or induce trypsin expression above the levels observed in fasting lobsters. In vitro assays showed that intact proteins rather than protein hydrolysates stimulate trypsin secretion in the lobster. However, the signal for trypsin transcription appears to be different to that for secretion and is probably mediated by the appearance of free amino acids in the digestive gland, suggesting a stepwise regulation of trypsin enzymes during digestion. We conclude that trypsin enzymes in P. argus are regulated at the transcription and secretion level by the quality of dietary proteins through two distinct signaling pathways. Our results indicate that protein digestion efficiency in spiny lobsters can be improved by selecting appropriated protein sources. However, other factors like the poor solubility of dietary proteins in dry diets could hamper further enhancement of digestion efficiency.


Asunto(s)
Proteínas en la Dieta/metabolismo , Palinuridae/metabolismo , Tripsina/metabolismo , Animales , Proteolisis , Transducción de Señal , Activación Transcripcional , Tripsina/genética
15.
FEBS J ; 277(17): 3489-501, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20649906

RESUMEN

Crustacean serine proteases (Brachyurins, EC 3.4.21.32) exhibit a wide variety of primary specificities and no member of this family has been reported for spiny lobsters. The aim of this work was to study the diversity of trypsins in the digestive gland of Panulirus argus. Several trypsin-like proteases were cloned and the results suggest that at least three gene families encode trypsins in the lobster. Three-dimensional comparative models of each trypsin anticipated differences in the interaction of these enzymes with proteinaceous substrates and inhibitors. Most of the studied enzymes were typical trypsins, but one could not be allocated to any of the brachyurins groups due to amino acid substitutions found in the vicinity of the active site. Among other changes in this form of the enzyme, conserved Gly216 and Gly226 (chymotrypsin numbering) are substituted by Leu and Pro, respectively, while retaining all other key residues for trypsin specificity. These substitutions may impair the access of bulky residues to the S1 site while they make the pocket more hydrophobic. The physiological role of this form of the enzyme could be relevant as it was found to be highly expressed in lobster. Further studies on the specificity and structure of this variant must be performed to locate it within the brachyurins family. It is suggested that specificity within this family of enzymes is broader than is currently believed.


Asunto(s)
Sustitución de Aminoácidos , Palinuridae/enzimología , Tripsina/química , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Sistema Digestivo/metabolismo , Datos de Secuencia Molecular , Palinuridae/genética , Alineación de Secuencia , Especificidad por Sustrato , Tripsina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA