Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891808

RESUMEN

AP2/ERF transcription factor genes play an important role in regulating the responses of plants to various abiotic stresses, such as cold, drought, high salinity, and high temperature. However, less is known about the function of oil palm AP2/ERF genes. We previously obtained 172 AP2/ERF genes of oil palm and found that the expression of EgAP2.25 was significantly up-regulated under salinity, cold, or drought stress conditions. In the present study, the sequence characterization and expression analysis for EgAP2.25 were conducted, showing that it was transiently over-expressed in Nicotiana tabacum L. The results indicated that transgenic tobacco plants over-expressing EgAP2.25 could have a stronger tolerance to salinity stress than wild-type tobacco plants. Compared with wild-type plants, the over-expression lines showed a significantly higher germination rate, better plant growth, and less chlorophyll damage. In addition, the improved salinity tolerance of EgAP2.25 transgenic plants was mainly attributed to higher antioxidant enzyme activities, increased proline and soluble sugar content, reduced H2O2 production, and lower MDA accumulation. Furthermore, several stress-related marker genes, including NtSOD, NtPOD, NtCAT, NtERD10B, NtDREB2B, NtERD10C, and NtP5CS, were significantly up-regulated in EgAP2.25 transgenic tobacco plants subjected to salinity stress. Overall, over-expression of the EgAP2.25 gene significantly enhanced salinity stress tolerance in transgenic tobacco plants. This study lays a foundation for further exploration of the regulatory mechanism of the EgAP2.25 gene in conferring salinity tolerance in oil palm.


Asunto(s)
Arecaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Tolerancia a la Sal , Arecaceae/genética , Arecaceae/metabolismo , Germinación/genética , Nicotiana/genética , Nicotiana/fisiología , Nicotiana/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Salino/genética , Tolerancia a la Sal/genética , Estrés Fisiológico/genética
2.
Metabolites ; 13(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37367885

RESUMEN

The fruit of the oil palm (Elaeis guineensis Jacq.) has fleshy mesocarpic tissue rich in lipids. This edible vegetable oil is economically and nutritionally significant across the world. The core concepts of oil biosynthesis in oil palms remain to be researched as the knowledge of oil biosynthesis in plants improves. In this study, we utilized a metabolite approach and mass spectral analysis to characterize metabolite changes and identify the sequences of protein accumulation during the physiological processes that regulate oil synthesis during oil palm fruit ripening. Here, we performed a comprehensive lipidomic data analysis in order to understand the role of lipid metabolism in oil biosynthesis mechanisms. The experimental materials were collected from the mesocarp of oil palm (Tenera) at 95 days (early accumulation of fatty acid, first stage), 125 days (rapid growth of fatty acid accumulation, second stage), and 185 days (stable period of fatty acid accumulation, third stage) after pollination. To gain a clear understanding of the lipid changes that occurred during the growth of the oil palm, the metabolome data were found using principal component analysis (PCA). Furthermore, the accumulations of diacylglycerols, ceramides, phosphatidylethanolamine, and phosphatidic acid varied between the developmental stages. Differentially expressed lipids were successfully identified and functionally classified using KEGG analysis. Proteins related to the metabolic pathway, glycerolipid metabolism, and glycerphospholipid metabolism were the most significantly changed proteins during fruit development. In this study, LC-MS analysis and evaluation of the lipid profile in different stages of oil palm were performed to gain insight into the regulatory mechanisms that enhance fruit quality and govern differences in lipid composition and biosynthesis.

3.
Front Plant Sci ; 14: 1132024, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968425

RESUMEN

Introduction: Oil palm is the world's highest yielding oil crop and its palm oil has high nutritional value, making it an oilseed plant with important economic value and application prospects. After picking, oil palm fruits exposed to air will gradually become soft and accelerate the process of fatty acid rancidity, which will not only affect their flavor and nutritional value, but also produce substances harmful to the human body. As a result, studying the dynamic change pattern of free fatty acids and important fatty acid metabolism-related regulatory genes during oil palm fatty acid rancidity can provide a theoretical basis for improving palm oil quality and extending its shelf life. Methods: The fruit of two shell types of oil palm, Pisifera (MP) and Tenera (MT), were used to study the changes of fruit souring at different times points of postharvesting, combined with LC-MS/MS metabolomics and RNA-seq transcriptomics techniques to analyze the dynamic changes of free fatty acids during fruit rancidity, and to find out the key enzyme genes and proteins in the process of free fatty acid synthesis and degradation according to metabolic pathways. Results and discussion: Metabolomic study revealed that there were 9 different types of free fatty acids at 0 hours of postharvest, 12 different types of free fatty acids at 24 hours of postharvest, and 8 different types of free fatty acids at 36 hours of postharvest. Transcriptomic research revealed substantial changes in gene expression between the three harvest phases of MT and MP. Combined metabolomics and transcriptomics analysis results show that the expression of SDR, FATA, FATB and MFP four key enzyme genes and enzyme proteins in the rancidity of free fatty acids are significantly correlated with Palmitic acid, Stearic acid, Myristic acid and Palmitoleic acid in oil palm fruit. In terms of binding gene expression, the expression of FATA gene and MFP protein in MT and MP was consistent, and both were expressed higher in MP. FATB fluctuates unevenly in MT and MP, with the level of expression growing steadily in MT and decreasing in MP before increasing. The amount of SDR gene expression varies in opposite directions in both shell types. The above findings suggest that these four enzyme genes and enzyme proteins may play an important role in regulating fatty acid rancidity and are the key enzyme genes and enzyme proteins that cause differences in fatty acid rancidity between MT and MP and other fruit shell types. Additionally, differential metabolite and differentially expressed genes were present in the three postharvest times of MT and MP fruits, with the difference occurring 24 hours postharvest being the most notable. As a result, 24 hours postharvest revealed the most obvious difference in fatty acid tranquility between MT and MP shell types of oil palm. The results from this study offer a theoretical underpinning for the gene mining of fatty acid rancidity of various oil palm fruit shell types and the enhancement of oilseed palm acid-resistant germplasm cultivation using molecular biology methods.

4.
Funct Integr Genomics ; 22(2): 261-278, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35229235

RESUMEN

Phytohormones play an important role in the pollination and fertilization of crops, but the regulatory mechanisms of oil palm pollination and fertilization are unclear. The purpose of this study is to explore the hormonal changes of oil palm pistils during flowering. We used RNA sequencing to evaluate differentially expressed genes (DEGs) in oil palm pistils at the pollination and non-pollination stages. In this study, we found that the hormone contents of oil palm pistil changed drastically after pollination. The transcriptome of the oil palm pistil without pollination and at 2 h, 4 h, 12 h, 24 h, and 48 h after pollination was comprehensively analyzed, and a large number of differential genes and metabolic pathways were explored. Based on the transcriptome data, it could be recognized that the changes of indoleacetic acid (IAA), zeatin riboside (ZR), and abscisic acid (ABA) during pollination were consistent with the changes in the corresponding gene transcripts. Differentially expressed genes during pollination and fertilization of oil palm were mainly related to energy metabolism and hormone signal transduction. It provides new insights to elucidate the interaction and regulation mechanisms of plant hormones before and after oil palm pollination, providing a theoretical basis and reference for the research on sexual reproduction of oil palm.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Polinización , Fertilización , Flores/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA