Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Stroke ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129597

RESUMEN

BACKGROUND: TGF (transforming growth factor)-ß pathway is central to blood-brain barrier development as it regulates cross talk between pericytes and endothelial cells. Murine embryos lacking TGFß receptor Alk5 (activin receptor-like kinase 5) in brain pericytes (mutants) display endothelial cell hyperproliferation, abnormal vessel morphology, and gross germinal matrix hemorrhage-intraventricular hemorrhage (GMH-IVH), leading to perinatal lethality. Mechanisms underlying how ALK5 signaling in pericytes noncell autonomously regulates endothelial cell behavior remain elusive. METHODS: Transcriptomic analysis of human brain pericytes with ALK5 silencing identified differential gene expression. Brain vascular cells isolated from mutant embryonic mice with GMH-IVH and preterm human IVH brain samples were utilized for target validation. Finally, pharmacological and genetic inhibition was used to study the therapeutic effects on GMH-IVH pathology. RESULTS: Herein, we establish that the TGFß/ALK5 pathway robustly represses ANGPT2 (angiopoietin-2) in pericytes via epigenetic remodeling. TGFß-driven SMAD (suppressor of mothers against decapentaplegic) 3/4 associates with TGIF1 (TGFß-induced factor homeobox 1) and HDAC (histone deacetylase) 5 to form a corepressor complex at the Angpt2 promoter, resulting in promoter deacetylation and gene repression. Moreover, murine and human germinal matrix vessels display increased ANGPT2 expression during GMH-IVH. Isolation of vascular cells from murine germinal matrix identifies pericytes as a cellular source of excessive ANGPT2. In addition, mutant endothelial cells exhibit higher phosphorylated TIE2 (tyrosine protein kinase receptor). Pharmacological or genetic inhibition of ANGPT2 in mutants improves germinal matrix vessel morphology and attenuates GMH pathogenesis. Importantly, genetic ablation of Angpt2 in mutant pericytes prevents perinatal lethality, prolonging survival. CONCLUSIONS: This study demonstrates that TGFß-mediated ANGPT2 repression in pericytes is critical for maintaining blood-brain barrier integrity and identifies pericyte-derived ANGPT2 as an important pathological target for GMH-IVH.

3.
Autops Case Rep ; 14: e2024477, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487033

RESUMEN

Twin reversed arterial perfusion (TRAP) sequence is a rare complication of monochorionic twinning whereby a donor twin perfuses an acardiac twin via aberrant vascular anastomoses. The resulting paradoxical retrograde blood flow supplying the acardiac twin is oxygen-poor, leading to some of the most severe malformations encountered in humans. Though the first descriptions of acardiac twins date back to at least the 16th century, the pathophysiologic processes which underpin the development of TRAP sequence are still being elucidated. Theories on the pathogenesis of TRAP sequence include deficiencies intrinsic to the embryo and primary abnormalities of the placental vasculature. Autopsy studies continue to provide clues to the underlying pathogenesis of TRAP sequence, and the characterization of the spectrum of manifestations that can be observed in acardiac twins. Herein, we present the clinical, autopsy, and molecular findings in a unique case of TRAP sequence. Novel findings include a primitive cloaca-like structure and chromosomal aberrations involving 6q11.1 and 15q25.1.

4.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328237

RESUMEN

A key feature of arteriogenesis is capillary-to-arterial endothelial cell fate transition. Although a number of studies in the past two decades suggested this process is driven by VEGF activation of Notch signaling, how arteriogenesis is regulated remains poorly understood. Here we report that arterial specification is mediated by fluid shear stress (FSS) independent of VEGFR2 signaling and that a decline in VEGFR2 signaling is required for arteriogenesis to fully take place. VEGF does not induce arterial fate in capillary ECs and, instead, counteracts FSS-driven capillary-to-arterial cell fate transition. Mechanistically, FSS-driven arterial program involves both Notch-dependent and Notch-independent events. Sox17 is the key mediator of the FSS-induced arterial specification and a target of VEGF-FSS competition. These findings suggest a new paradigm of VEGF-FSS crosstalk coordinating angiogenesis, arteriogenesis and capillary maintenance.

5.
Autops. Case Rep ; 14: e2024477, 2024. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1533855

RESUMEN

ABSTRACT Twin reversed arterial perfusion (TRAP) sequence is a rare complication of monochorionic twinning whereby a donor twin perfuses an acardiac twin via aberrant vascular anastomoses. The resulting paradoxical retrograde blood flow supplying the acardiac twin is oxygen-poor, leading to some of the most severe malformations encountered in humans. Though the first descriptions of acardiac twins date back to at least the 16th century, the pathophysiologic processes which underpin the development of TRAP sequence are still being elucidated. Theories on the pathogenesis of TRAP sequence include deficiencies intrinsic to the embryo and primary abnormalities of the placental vasculature. Autopsy studies continue to provide clues to the underlying pathogenesis of TRAP sequence, and the characterization of the spectrum of manifestations that can be observed in acardiac twins. Herein, we present the clinical, autopsy, and molecular findings in a unique case of TRAP sequence. Novel findings include a primitive cloaca-like structure and chromosomal aberrations involving 6q11.1 and 15q25.1.

6.
Clin Transplant ; 37(12): e15153, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37792313

RESUMEN

PURPOSE OF THE REVIEW: Cardiac allograft vasculopathy (CAV) is a progressive fibroproliferative disease which occurs after heart transplantation and is associated with significant long-term morbidity and mortality. Currently available strategies including statins, mammalian target of rapamycin (mTOR) inhibitors, and revascularization, have limited overall effectiveness in treating this pathology once the disease process is established. mTOR inhibitors, while effective when used early in the disease process, are not well tolerated, and hence not routinely used in post-transplant care. RECENT DATA: Recent work on rodent models have given us a novel mechanistic understanding of effects of ascorbic acid in preventing CAV. TET methyl cytosine dioxygenase2 (TET2) reduces vascular smooth muscle cell (VSMC) apoptosis and intimal thickening. TET2 is repressed by interferon γ (IFNγ) in the setting of CAV. Ascorbic acid has been shown to promote TET2 activity and attenuate allograft vasculopathy in animal models and CAV progression in a small clinical trial. SUMMARY: CAV remains a challenging disease process and needs better preventative strategies. Ascorbic acid improves endothelial dysfunction, reduces reactive oxygen species, and prevents development of intimal hyperplasia by preventing smooth muscle cell apoptosis and hyperproliferation. Further large-scale randomized control studies of ascorbic acid are needed to establish the role in routine post-transplant management.


Asunto(s)
Cardiopatías , Trasplante de Corazón , Enfermedades Vasculares , Animales , Humanos , Ácido Ascórbico/uso terapéutico , Cardiopatías/etiología , Enfermedades Vasculares/tratamiento farmacológico , Enfermedades Vasculares/etiología , Enfermedades Vasculares/prevención & control , Trasplante Homólogo , Trasplante de Corazón/efectos adversos , Aloinjertos , Mamíferos
7.
Nature ; 621(7980): 788-795, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730989

RESUMEN

Oxytocin is a neuropeptide that is important for maternal physiology and childcare, including parturition and milk ejection during nursing1-6. Suckling triggers the release of oxytocin, but other sensory cues-specifically, infant cries-can increase the levels of oxytocin in new human mothers7, which indicates that cries can activate hypothalamic oxytocin neurons. Here we describe a neural circuit that routes auditory information about infant vocalizations to mouse oxytocin neurons. We performed in vivo electrophysiological recordings and photometry from identified oxytocin neurons in awake maternal mice that were presented with pup calls. We found that oxytocin neurons responded to pup vocalizations, but not to pure tones, through input from the posterior intralaminar thalamus, and that repetitive thalamic stimulation induced lasting disinhibition of oxytocin neurons. This circuit gates central oxytocin release and maternal behaviour in response to calls, providing a mechanism for the integration of sensory cues from the offspring in maternal endocrine networks to ensure modulation of brain state for efficient parenting.


Asunto(s)
Conducta Materna , Vías Nerviosas , Neuronas , Oxitocina , Vocalización Animal , Animales , Femenino , Ratones , Señales (Psicología) , Hipotálamo/citología , Hipotálamo/fisiología , Conducta Materna/fisiología , Neuronas/metabolismo , Oxitocina/metabolismo , Fotometría , Núcleos Talámicos/fisiología , Vocalización Animal/fisiología , Vigilia
8.
Proc Natl Acad Sci U S A ; 120(38): e2218150120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695914

RESUMEN

The endothelium is a major target of the proinflammatory cytokine, tumor necrosis factor alpha (TNFα). Exposure of endothelial cells (EC) to proinflammatory stimuli leads to an increase in mitochondrial metabolism; however, the function and regulation of elevated mitochondrial metabolism in EC in response to proinflammatory cytokines remain unclear. Studies using high-resolution metabolomics and 13C-glucose and 13C-glutamine labeling flux techniques showed that pyruvate dehydrogenase activity (PDH) and oxidative tricarboxylic acid cycle (TCA) flux are elevated in human umbilical vein ECs in response to overnight (16 h) treatment with TNFα (10 ng/mL). Mechanistic studies indicated that TNFα mediated these metabolic changes via mitochondrial-specific protein degradation of pyruvate dehydrogenase kinase 4 (PDK4, inhibitor of PDH) by the Lon protease via an NF-κB-dependent mechanism. Using RNA sequencing following siRNA-mediated knockdown of the catalytically active subunit of PDH, PDHE1α (PDHA1 gene), we show that PDH flux controls the transcription of approximately one-third of the genes that are up-regulated by TNFα stimulation. Notably, TNFα-induced PDH flux regulates a unique signature of proinflammatory mediators (cytokines and chemokines) but not inducible adhesion molecules. Metabolomics and ChIP sequencing for acetylated modification on lysine 27 of histone 3 (H3K27ac) showed that TNFα-induced PDH flux promotes histone acetylation of specific gene loci via citrate accumulation and ATP-citrate lyase-mediated generation of acetyl CoA. Together, these results uncover a mechanism by which TNFα signaling increases oxidative TCA flux of glucose to support TNFα-induced gene transcription through extramitochondrial acetyl CoA generation and histone acetylation.


Asunto(s)
Proteasa La , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/farmacología , Acetilcoenzima A , Células Endoteliales , Histonas , Citocinas
9.
Stem Cells ; 41(10): 907-915, 2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37386941

RESUMEN

The role of serum response factor (Srf), a central mediator of actin dynamics and mechanical signaling, in cell identity regulation is debated to be either a stabilizer or a destabilizer. We investigated the role of Srf in cell fate stability using mouse pluripotent stem cells. Despite the fact that serum-containing cultures yield heterogeneous gene expression, deletion of Srf in mouse pluripotent stem cells leads to further exacerbated cell state heterogeneity. The exaggerated heterogeneity is detectible not only as increased lineage priming but also as the developmentally earlier 2C-like cell state. Thus, pluripotent cells explore more variety of cellular states in both directions of development surrounding naïve pluripotency, a behavior that is constrained by Srf. These results support that Srf functions as a cell state stabilizer, providing rationale for its functional modulation in cell fate intervention and engineering.


Asunto(s)
Células Madre Pluripotentes , Factor de Respuesta Sérica , Ratones , Animales , Factor de Respuesta Sérica/genética , Factor de Respuesta Sérica/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular/genética , Actinas/metabolismo , Expresión Génica
10.
Anal Chem ; 95(28): 10695-10702, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37389455

RESUMEN

Selected examples of Native American woven woodsplint basketry created between 1870 and 1983 are studied to recover traditional knowledge about their manufacture by identifying dyes or colorants. An ambient mass spectrometry system is designed to sample from intact objects with minimal invasiveness, neither cutting solids from the whole, exposing objects to liquid, nor leaving a mark on a surface. Baskets up to 60 cm wide in one dimension are placed on height-adjusted mounts. A timed jet of inert nitrogen from a finely positioned probe thermally desorbs neutral material from a mounted item, and a heated transport tube carries the analyte 2 m away at 4.9 L/min. Gas phase analyte is mixed with anisole dopant from an in-line permeation tube and photoionized in a reaction tee immediately before entering the mass spectrometer, identifying dye molecules in real time. Extensive optimization and exposure tests with flat and near-flat splints of dyed wood ensure that the analysis produces no discoloration on the curved and contoured basket splints.

11.
J Econ Entomol ; 116(3): 719-725, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37171119

RESUMEN

Cotton leafroll dwarf virus (CLRDV) is a yield-limiting, aphid-transmitted virus that was identified in cotton, Gossypium hirsutum L., in the United States of America in 2017. CLRDV is currently classified in the genus Polerovirus, family Solemoviridae. Although 8 species of aphids (Hemiptera: Aphididae) are reported to infest cotton, Aphis gossypii Glover is the only known vector of CLRDV to this crop. Aphis gossypii transmits CLRDV in a persistent and nonpropagative manner, but acquisition and retention times have only been partially characterized in Brazil. The main objectives of this study were to characterize the acquisition access period, the inoculation access period, and retention times for a U.S. strain of CLRDV and A. gossypii population. A sub-objective was to test the vector competence of Myzus persicae Sulzer and Aphis craccivora Koch. In our study, A. gossypii apterous and alate morphs were able to acquire CLRDV in 30 min and 24 h, inoculate CLRDV in 45 and 15 min, and retain CLRDV for 15 and 23 days, respectively. Neither M. persicae nor A. craccivora acquired or transmitted CLRDV to cotton.


Asunto(s)
Áfidos , Luteoviridae , Animales , Estados Unidos , Gossypium , Brasil
12.
Am J Physiol Heart Circ Physiol ; 325(1): H77-H88, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37145957

RESUMEN

Arteriovenous fistulae (AVF) fail to mature more frequently in female patients compared with male patients, leading to inferior outcomes and decreased utilization. Since our mouse AVF model recapitulates sex differences in human AVF maturation, we hypothesized that sex hormones mediate these differences during AVF maturation. C57BL/6 mice (9-11 wk) were treated with aortocaval AVF surgery and/or gonadectomy. AVF hemodynamics were measured via ultrasound (days 0-21). Blood was collected for FACS and tissue for immunofluorescence and ELISA (days 3 and 7); wall thickness was assessed by histology (day 21). Inferior vena cava shear stress was higher in male mice (P = 0.0028) after gonadectomy, and they had increased wall thickness (22.0 ± 1.8 vs. 12.7 ± 1.2 µm; P < 0.0001). Conversely, female mice had decreased wall thickness (6.8 ± 0.6 vs. 15.3 ± 0.9 µm; P = 0.0002). Intact female mice had higher proportions of circulating CD3+ T cells on day 3 (P = 0.0043), CD4+ (P = 0.0003) and CD8+ T cells (P = 0.005) on day 7, and CD11b+ monocytes on day 3 (P = 0.0046). After gonadectomy, these differences disappeared. In intact female mice, CD3+ T cells (P = 0.025), CD4+ T cells (P = 0.0178), CD8+ T cells (P = 0.0571), and CD68+ macrophages (P = 0.0078) increased in the fistula wall on days 3 and 7. This disappeared after gonadectomy. Furthermore, female mice had higher IL-10 (P = 0.0217) and TNF-α (P = 0.0417) levels in their AVF walls than male mice. Sex hormones mediate AVF maturation, suggesting that hormone receptor signaling may be a target to improve AVF maturation.NEW & NOTEWORTHY After arteriovenous fistula creation, females have lower rates of maturation and higher rates of failure than males. In a mouse model of venous adaptation that recapitulates human fistula maturation, sex hormones may be mechanisms of the sexual dimorphism: testosterone is associated with reduced shear stress, whereas estrogen is associated with increased immune cell recruitment. Modulating sex hormones or downstream effectors suggests sex-specific therapies and could address disparities in sex differences in clinical outcomes.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Humanos , Masculino , Femenino , Ratones , Animales , Linfocitos T CD8-positivos , Maduración Sexual , Ratones Endogámicos C57BL , Derivación Arteriovenosa Quirúrgica/efectos adversos , Modelos Animales de Enfermedad , Testosterona , Inmunidad , Diálisis Renal
13.
Nat Aging ; 3(1): 64-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36743663

RESUMEN

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Médula Ósea/metabolismo , Integrina beta3/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso , Músculo Liso/metabolismo
15.
J Exp Med ; 220(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36305874

RESUMEN

Current understanding of tumor immunosuppressive mechanisms forms the basis for modern day immunotherapies. Immunoregulatory role of platelets in cancer remains largely elusive. Platelets from non-small cell lung cancer (NSCLC) patients revealed a distinct activation phenotype. TREM-like transcript 1 (TLT-1), a platelet protein, was increased along with enhanced extracellular release from NSCLC platelets. The increased platelet TLT-1 was also evident in humanized mice with patient-derived tumors. In immunocompetent mice with syngeneic tumors, TLT-1 binding to T cells, in vivo, led to suppression of CD8 T cells, promoting tumor growth. We identified direct interaction between TLT-1 and CD3ε on T cells, implicating the NF-κB pathway in CD8 T cell suppression. Anti-TLT-1 antibody rescued patients' T cells from platelet-induced suppression ex vivo and reduced tumors in mice in vivo. Clinically, higher TLT-1 correlated with reduced survival of NSCLC patients. Our findings thus identify TLT-1 as a platelet-derived immunosuppressor that suppresses CD8 T cells and demonstrate its therapeutic and prognostic significance in cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ratones , Animales , Receptores Inmunológicos/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Plaquetas/metabolismo , Linfocitos T CD8-positivos
16.
Mol Plant Pathol ; 24(7): 788-800, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36239302

RESUMEN

Recent reverse genetics technologies have enabled genetic manipulation of plant negative-strand RNA virus (NSR) genomes. Here, we report construction of an infectious clone for the maize-infecting Alphanucleorhabdovirus maydis, the first efficient NSR vector for maize. The full-length infectious clone was established using agrobacterium-mediated delivery of full-length maize mosaic virus (MMV) antigenomic RNA and the viral core proteins (nucleoprotein N, phosphoprotein P, and RNA-directed RNA polymerase L) required for viral transcription and replication into Nicotiana benthamiana. Insertion of intron 2 ST-LS1 into the viral L gene increased stability of the infectious clone in Escherichia coli and Agrobacterium tumefaciens. To monitor virus infection in vivo, a green fluorescent protein (GFP) gene was inserted in between the N and P gene junctions to generate recombinant MMV-GFP. Complementary DNA (cDNA) clones of MMV-wild type (WT) and MMV-GFP replicated in single cells of agroinfiltrated N. benthamiana. Uniform systemic infection and high GFP expression were observed in maize inoculated with extracts of the infiltrated N. benthamiana leaves. Insect vectors supported virus infection when inoculated via feeding on infected maize or microinjection. Both MMV-WT and MMV-GFP were efficiently transmitted to maize by planthopper vectors. The GFP reporter gene was stable in the virus genome and expression remained high over three cycles of transmission in plants and insects. The MMV infectious clone will be a versatile tool for expression of proteins of interest in maize and cross-kingdom studies of virus replication in plant and insect hosts.


Asunto(s)
Hemípteros , Zea mays , Animales , ADN Complementario , Zea mays/genética , Insectos Vectores , Nicotiana/genética , Vectores Genéticos
17.
Virology ; 577: 163-173, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36395538

RESUMEN

Rhabdovirus glycoproteins (G) serve multifunctional roles in virus entry, assembly, and exit from animal cells. We hypothesize that maize mosaic virus (MMV) G is required for invasion, infection, and spread in Peregrinus maidis, the planthopper vector. Using a membrane-based yeast two-hybrid assay, we identified 107 P. maidis proteins that physically interacted with MMV G, of which approximately 53% matched proteins with known functions including endocytosis, vesicle-mediated transport, protein synthesis and turnover, nuclear export, metabolism and host defense. Physical interaction networks among conserved proteins indicated a possible cellular coordination of processes associated with MMV G translation, protein folding and trafficking. Non-annotated proteins contained predicted functional sites, including a diverse array of ligand binding sites. Cyclophilin A and apolipophorin III co-immunoprecipitated with MMV G, and each showed different patterns of localization with G in insect cells. This study describes the first protein interactome for a rhabdovirus spike protein and insect vector.

18.
Science ; 378(6618): 442, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36302027
20.
J Trauma Nurs ; 29(5): 266-271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36095274

RESUMEN

BACKGROUND: Trauma performance improvement programs are required by the American College of Surgeons to review all nonsurgical admissions if the annual rate exceeds 10%. These reviews can have varying consistency between reviewers, are time consuming, and the consequent aggregate data are difficult to evaluate for trends. OBJECTIVE: This study set forth to standardize nonsurgical admission review through validation of the Nelson tool, which is a published objective scoring tool to determine the appropriateness of nonsurgical admissions. We hypothesized that implementation of this tool would facilitate earlier identification of events resulting in meaningful intervention and a reduction of inappropriate nonsurgical admissions. METHODS: The Nelson tool and scoring was integrated into the nonsurgical admission review process. A customized audit filter and report were built in the trauma registry. Data were reviewed with respect to scores and admitting service. Statistical analysis included using analysis of variance and t tests to examine differences between admitting services, χ2 test of independence or Fisher's exact to test the association of categorical variables, and ordinal logistic regression to test the ability of the total Nelson tool to predict appropriateness of admission. RESULTS: Using the Nelson tool, scores resulted in appropriate admission service in over 90% of cases. Implementation of the tool resulted in a decreased performance improvement workload with a 78% reduction in nonsurgical admission cases required to go to secondary level of review. CONCLUSIONS: Utilization of a validated scoring tool decreases performance improvement workload without compromising patient safety.


Asunto(s)
Hospitalización , Admisión del Paciente , Humanos , Modelos Logísticos , Sistema de Registros , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA