Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 57(9): 1611-1624, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36949610

RESUMEN

Photobiomodulation (PBM)-the irradiation of tissue with low-intensity light-mitigates neuropathology in rodent models of Parkinson's disease (PD) when targeted at the head ('transcranial PBM'). In humans, however, attenuation of light energy by the scalp and skull necessitates a different approach. We have reported that targeting PBM at the body also protects the brain by a mechanism that spreads from the irradiated tissue ('remote PBM'), although the optimal peripheral tissue target for remote PBM is currently unclear. This study compared the neuroprotective efficacy of remote PBM targeting the abdomen or leg with transcranial PBM, in mouse and non-human primate models of PD. In a pilot study, the neurotoxin MPTP was used to induce PD in non-human primates; PBM (670 nm, 50 mW/cm2 , 6 min/day) of the abdomen (n = 1) was associated with fewer clinical signs and more surviving midbrain dopaminergic cells relative to MPTP-injected non-human primates not treated with PBM. Validation studies in MPTP-injected mice (n = 10 per group) revealed a significant rescue of midbrain dopaminergic cells in mice receiving PBM to the abdomen (~80%, p < .0001) or legs (~80%, p < .0001), with comparable rescue of axonal terminals in the striatum. Strikingly, this degree of neuroprotection was at least as, if not more, pronounced than that achieved with transcranial PBM. These findings confirm that remote PBM provides neuroprotection against MPTP-induced destruction of the key circuitry underlying PD, with both the abdomen and legs serving as viable remote targets. This should provide the impetus for a comprehensive investigation of remote PBM-induced neuroprotection in other models of PD and, ultimately, human patients.


Asunto(s)
Neuroprotección , Enfermedad de Parkinson , Humanos , Ratones , Animales , Pierna , Proyectos Piloto , Enfermedad de Parkinson/terapia , Abdomen
2.
Eur Respir J ; 55(4)2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32184317

RESUMEN

Accumulating evidence highlights links between iron regulation and respiratory disease. Here, we assessed the relationship between iron levels and regulatory responses in clinical and experimental asthma.We show that cell-free iron levels are reduced in the bronchoalveolar lavage (BAL) supernatant of severe or mild-moderate asthma patients and correlate with lower forced expiratory volume in 1 s (FEV1). Conversely, iron-loaded cell numbers were increased in BAL in these patients and with lower FEV1/forced vital capacity (FVC) ratio. The airway tissue expression of the iron sequestration molecules divalent metal transporter 1 (DMT1) and transferrin receptor 1 (TFR1) are increased in asthma, with TFR1 expression correlating with reduced lung function and increased Type-2 (T2) inflammatory responses in the airways. Furthermore, pulmonary iron levels are increased in a house dust mite (HDM)-induced model of experimental asthma in association with augmented Tfr1 expression in airway tissue, similar to human disease. We show that macrophages are the predominant source of increased Tfr1 and Tfr1+ macrophages have increased Il13 expression. We also show that increased iron levels induce increased pro-inflammatory cytokine and/or extracellular matrix (ECM) responses in human airway smooth muscle (ASM) cells and fibroblasts ex vivo and induce key features of asthma in vivo, including airway hyper-responsiveness (AHR) and fibrosis, and T2 inflammatory responses.Together these complementary clinical and experimental data highlight the importance of altered pulmonary iron levels and regulation in asthma, and the need for a greater focus on the role and potential therapeutic targeting of iron in the pathogenesis and severity of disease.


Asunto(s)
Asma , Animales , Humanos , Interleucina-13 , Hierro , Pulmón , Pyroglyphidae
3.
J Pathol ; 251(1): 49-62, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32083318

RESUMEN

Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene-deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF. © 2020 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Fibrosis Pulmonar Idiopática/patología , Hierro/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Animales , Bleomicina/farmacología , Proliferación Celular , Células Cultivadas , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/patología , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Humanos , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones Noqueados
4.
Brain Behav Immun ; 83: 22-32, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31626972

RESUMEN

Alzheimer's disease, the most common form of dementia, was first formally described in 1907 yet its etiology has remained elusive. Recent proposals that Aß peptide may be part of the brain immune response have revived longstanding contention about the possibility of causal relationships between brain pathogens and Alzheimer's disease. Research has focused on infectious pathogens that may colonize the brain such as herpes simplex type I. Some researchers have proposed the respiratory bacteria Chlamydia pneumoniae may also be implicated in Alzheimer's disease, however this remains controversial. This review aims to provide a balanced overview of the current evidence and its limitations and future approaches that may resolve controversies. We discuss the evidence from in vitro, animal and human studies proposed to implicate Chlamydia pneumoniae in Alzheimer's disease and other neurological conditions, the potential mechanisms by which the bacterium may contribute to pathogenesis and limitations of previous studies that may explain the inconsistencies in the literature.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/microbiología , Chlamydophila pneumoniae/patogenicidad , Incertidumbre , Animales , Encéfalo/microbiología , Infecciones por Chlamydophila/complicaciones , Infecciones por Chlamydophila/microbiología , Humanos , Reproducibilidad de los Resultados
5.
Biomolecules ; 9(10)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31590236

RESUMEN

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease (PD) as it specifically damages the nigrostriatal dopaminergic pathway. Recent studies in mice have, however, provided evidence that MPTP also compromises the integrity of the brain's vasculature. Photobiomodulation (PBM), the irradiation of tissue with low-intensity red light, mitigates MPTP-induced loss of dopaminergic neurons in the midbrain, but whether PBM also mitigates MPTP-induced damage to the cerebrovasculature has not been investigated. This study aimed to characterize the time course of cerebrovascular disruption following MPTP exposure and to determine whether PBM can mitigate this disruption. Young adult male C57BL/6 mice were injected with 80 mg/kg MPTP or isotonic saline and perfused with fluorescein isothiocyanate FITC-labelled albumin at various time points post-injection. By 7 days post-injection, there was substantial and significant leakage of FITC-labelled albumin into both the substantia nigra pars compacta (SNc; p < 0.0001) and the caudate-putamen complex (CPu; p ≤ 0.0003); this leakage partly subsided by 14 days post-injection. Mice that were injected with MPTP and treated with daily transcranial PBM (670 nm, 50 mW/cm2, 3 min/day), commencing 24 hours after MPTP injection, showed significantly less leakage of FITC-labelled albumin in both the SNc (p < 0.0001) and CPu (p = 0.0003) than sham-treated MPTP mice, with levels of leakage that were not significantly different from saline-injected controls. In summary, this study confirms that MPTP damages the brain's vasculature, delineates the time course of leakage induced by MPTP out to 14 days post-injection, and provides the first direct evidence that PBM can mitigate this leakage. These findings provide new understanding of the use of the MPTP mouse model as an experimental tool and highlight the potential of PBM as a therapeutic tool for reducing vascular dysfunction in neurological conditions.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Encéfalo/irrigación sanguínea , Terapia por Luz de Baja Intensidad/métodos , Enfermedad de Parkinson/radioterapia , Animales , Encéfalo/efectos de la radiación , Circulación Cerebrovascular/efectos de la radiación , Modelos Animales de Enfermedad , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Distribución Aleatoria , Albúmina Sérica/administración & dosificación , Albúmina Sérica/farmacología
6.
Int J Biochem Cell Biol ; 88: 181-195, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28495571

RESUMEN

Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled in throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.


Asunto(s)
Hierro/metabolismo , Enfermedades Respiratorias/etiología , Enfermedades Respiratorias/metabolismo , Animales , Homeostasis , Humanos , Enfermedades Respiratorias/inmunología , Enfermedades Respiratorias/terapia , Infecciones del Sistema Respiratorio/etiología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/metabolismo , Infecciones del Sistema Respiratorio/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA