Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39004131

RESUMEN

Farmstead dairy processing facilities may be particularly susceptible to Listeria spp. contamination due to the close physical proximity of their processing environments (PE) to associated dairy farm environments (FE). In this case study, we supported the implementation of interventions focused on improving (i) cleaning and sanitation efficacy, (ii) hygienic zoning, and (iii) sanitary equipment/facility design and maintenance in a farmstead dairy processing facility, and evaluated their impact on Listeria spp. detection in the farmstead's PE over 1 year. Detection of Listeria spp. in the farmstead's PE was numerically reduced from 50% to 7.5% after 1 year of intervention implementation, suggesting that these interventions were effective at improving Listeria spp. control. In addition, environmental samples were also collected from the farmstead's FE to evaluate the risk of the FE as a potential source of Listeria spp. in the PE. Overall, detection of Listeria spp. was higher in samples collected from the FE (75%, 27/36) compared with samples collected from the PE (24%, 29/120). Whole genome sequencing (WGS) performed on select isolates collected from the PE and FE supported the identification of 6 clusters (range of 3 to 15 isolates per cluster) that showed ≤ 50 high quality single nucleotide polymorphism (hqSNP) differences. Of these 6 clusters, 3 (i.e., clusters 2, 4, and 5) contained isolates that were collected from both the PE and FE, suggesting that transmission between these 2 environments was likely. Moreover, all cluster 2 isolates represented a clonal complex (CC) of L. monocytogenes commonly associated with dairy farm environmental reservoirs (i.e., CC666), which may support that the farmstead's FE represented an upstream source of the cluster 2 isolates that were found in the PE. Overall, our data underscore that, while the FE can represent a potential upstream source of Listeria spp. contamination in a farmstead dairy processing facility, implementation of targeted interventions can help effectively minimize Listeria spp. contamination in the PE.

2.
J Food Prot ; 87(4): 100254, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38417482

RESUMEN

Small- and medium-sized dairy processing facilities (SMDFs) may face unique challenges with respect to controlling Listeria in their processing environments, e.g., due to limited resources. The aim of this study was to implement and evaluate environmental monitoring programs (EMPs) for Listeria control in eight SMDFs in a ∼1-year longitudinal study; this included a comparison of pre-operation (i.e., after cleaning and sanitation and prior to production) and mid-operation (i.e., at least 4 h into production) sampling strategies. Among 2,072 environmental sponge samples collected across all facilities, 272 (13%) were positive for Listeria. Listeria prevalence among pre- and mid-operation samples (15% and 17%, respectively), was not significantly different. Whole genome sequencing (WGS) performed on select isolates to characterize Listeria persistence patterns revealed repeated isolation of closely related Listeria isolates (i.e., ≤20 high-quality single nucleotide polymorphism [hqSNP] differences) in 5/8 facilities over >6 months, suggesting Listeria persistence and/or reintroduction was relatively common among the SMDFs evaluated here. WGS furthermore showed that for 41 sites where samples collected pre- and mid-operation were positive for Listeria, Listeria isolates obtained were highly related (i.e., ≤10 hqSNP differences), suggesting that pre-operation sampling alone may be sufficient and more effective for detecting sites of Listeria persistence. Importantly, our data also showed that only 1/8 of facilities showed a significant decrease in Listeria prevalence over 1 year, indicating continued challenges with Listeria control in at least some SMDFs. We conclude that options for simplified Listeria EMPs (e.g., with a focus on pre-operation sampling, which allows for more rapid identification of likely persistence sites) may be valuable for improved Listeria control in SMDFs.


Asunto(s)
Listeria monocytogenes , Listeria , Microbiología de Alimentos , Listeria monocytogenes/genética , Estudios Longitudinales , Monitoreo del Ambiente
3.
J Dairy Sci ; 107(6): 3478-3491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38246545

RESUMEN

Laboratory pasteurization count (LPC) enumerates thermoduric bacteria and is one parameter used to assess raw milk quality. No regulatory limit has presently been set for LPC, but LPC data are used by some dairy processors and cooperatives to designate raw milk quality premiums paid to farmers and may also be used for troubleshooting bacterial contamination issues. Although it is occasionally used as a proxy for levels of bacterial spores in raw milk, limited knowledge is available on the types of organisms that are enumerated by LPC in contemporary raw milk supplies. Although historical studies have reported that thermoduric bacteria quantified by LPC may predominantly represent gram-positive cocci, updated knowledge on microbial populations enumerated by LPC in contemporary organic raw milk supplies is needed. To address this gap, organic raw milk samples from across the United States (n = 94) were assessed using LPC, and bacterial isolates were characterized. LPC ranged from below detection (<0.70 log cfu/mL) to 4.07 log cfu/mL, with a geometric mean of 1.48 log cfu/mL. Among 380 isolates characterized by 16S rDNA sequencing, 52.6%, 44.5%, and 2.4% were identified as gram-positive sporeformers, gram-positive nonsporeformers, and gram-negatives, respectively; 0.5% could not be categorized into those groups because they could only be assigned a higher level of taxonomy. Isolates identified as gram-positive sporeformers were predominantly Bacillus (168/200), and gram-positive nonsporeformers were predominantly Brachybacterium (56/169) and Kocuria (47/169). To elucidate if the LPC level can be an indicator of the type of thermoduric (e.g., sporeforming bacteria) present in raw milk, we evaluated the proportion of sporeformers in raw milk samples with LPC of ≤100 cfu/mL, 100 to 200 cfu/mL, and ≥200 cfu/mL (51%, 67%, and 35%), showing a trend for sporeformers to represent a smaller proportion of the total thermoduric population when LPC increases, although overall linear regression showed no significant association between the proportion of sporeformers and the LPC concentration. Hence, LPC level alone provides no insight into the makeup of the thermoduric population in raw milk, and further characterization is needed to elucidate the bacterial drivers of elevated LPC in raw milk. We therefore further characterized the isolates from this study using MALDI-TOF mass spectrometry (MALDI-TOF MS), a rapid microbial identification tool that is more readily available to dairy producers than 16S rDNA PCR and sequencing. Although our data indicated agreement between 16S rDNA sequencing and MALDI-TOF MS for 66.6% of isolates at the genus level, 24.2% and 9.2% could not be reliably identified or were mischaracterized using MALDI-TOF MS, respectively. This suggests that further optimization of this method is needed to allow for accurate characterization of thermoduric organisms commonly found in raw milk. Ultimately, our study provides a contemporary perspective on thermoduric bacteria selected by the LPC method and establishes that the LPC alone is not sufficient for identifying the bacterial drivers of LPC levels. Further development of rapid characterization methods that are accessible to producers, cooperatives, and processors will support milk quality troubleshooting efforts and ultimately improve outcomes for dairy industry community members.


Asunto(s)
Leche , Pasteurización , Esporas Bacterianas , Leche/microbiología , Animales , Esporas Bacterianas/aislamiento & purificación , Recuento de Colonia Microbiana
4.
J Dairy Sci ; 107(3): 1370-1385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37944807

RESUMEN

Ropy defect of pasteurized fluid milk is a type of spoilage which manifests itself by an increased viscosity, slimy body, and string-like flow during pouring. This defect has, among other causes, been attributed to the growth, proliferation and exopolysaccharide production by coliform bacteria, which are most commonly introduced in milk as post-pasteurization contaminants. As we identified both Klebsiella pneumoniae ssp. pneumoniae and Rahnella inusitata that were linked to a ropy defect, the goal of this study was to characterize 3 K. pneumoniae ssp. pneumoniae strains and 2 R. inusitata for (1) their ability to grow and cause ropy defect in milk at 6°C and 21°C and to (2) probe the genetic basis for observed ropy phenotype. Although all K. pneumoniae ssp. pneumoniae and R. inusitata strains showed net growth of >4 log10 over 48 h in UHT milk at 21°C, only R. inusitata strains displayed growth during 28-d incubation period at 6°C (>6 log10). Two out of 3 K. pneumoniae ssp. pneumoniae strains were capable of causing the ropy defect in milk at 21°C, as supported by an increase in the viscosity of milk and string-like flow during pouring; these 2 strains were originally isolated from raw milk. Only one R. inusitata strains was able to cause the ropy defect in milk; this strain was able to cause the defect at both 6°C and 21°C, and was originally isolated from a pasteurized milk. These findings suggest that the potential of K. pneumoniae ssp. pneumoniae and R. inusitata to cause ropy defect in milk is a strain-dependent characteristic. Comparative genomics provided no definitive answer on genetic basis for the ropy phenotype. However, for K. pneumoniae ssp. pneumoniae, genes rffG, rffH, rfbD, and rfbC involved in biosynthesis and secretion of enterobacterial common antigen (ECA) could only be found in the 2 strains that produced ropy defect, and for R. inusitata a set of 2 glycosyltransferase- and flippase genes involved in nucleotide sugar biosynthesis and export could only be identified in the ropy strain. Although these results provide some initial information for potential markers for strains that can cause ropy milk, the relationship between genetic content and ropiness in milk remains poorly understood and merits further investigation.


Asunto(s)
Genómica , Klebsiella pneumoniae , Rahnella , Animales , Klebsiella pneumoniae/genética , Klebsiella
5.
JDS Commun ; 4(2): 65-69, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36974217

RESUMEN

Butterfat and protein complicate attempts to extract bacterial cells from milk by centrifugation for use in basic microscopy. Some types of bacteria preferentially separate into the butterfat layer upon centrifugation and are lost when this layer is discarded, and the action of bacterial protease enzymes can cause milk proteins to precipitate and partition into the centrifugal pellet. Butterfat and precipitated protein remaining in the centrifugal pellet along with the desired bacterial cells can confound the results of differential staining and microscopy. Oat- and other plant-based beverages, which are often manufactured by dairy processors on shared equipment, present similar hurdles to bacterial extraction and microscopic visualization because of the presence of oils, starch granules, and dietary fiber particles in these products. Herein we describe methods for centrifugal separation of bacterial cells for microscopy from unflavored milk, chocolate milk, and oat-based beverage. Cell suspensions prepared through these methods were used for phase-contrast microscopy, Gram staining, and viability staining. These techniques can be used to provide rapid, culture-independent diagnostic information when bacterial cells are expected to be present in high concentrations, as in the event of sporadic product spoilage or mass product spoilage incidents.

6.
J Dairy Sci ; 106(3): 1687-1694, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36710187

RESUMEN

Bacterial spores, which are found in raw milk, can survive harsh processing conditions encountered in dairy manufacturing, including pasteurization and drying. Low-spore raw milk is desirable for dairy industry stakeholders, especially those who want to extend the shelf life of their product, expand their distribution channels, or reduce product spoilage. A recent previous study showed that an on-farm intervention that included washing towels with chlorine bleach and drying them completely, as well as training milking parlor employees to focus on teat end cleaning, significantly reduced spore levels in bulk tank raw milk. As a follow up to that previous study, here we calculate the costs associated with that previously described intervention as ranging from $9.49 to $13.35 per cow per year, depending on farm size. A Monte Carlo model was used to predict the shelf life of high temperature, short time fluid milk processed from raw milk before and after this low-cost intervention was applied, based on experimental data collected in a previous study. The model predicted that 18.24% of half-gallon containers of fluid milk processed from raw milk receiving no spore intervention would exceed the pasteurized milk ordinance limit of 20,000 cfu/mL by 17 d after pasteurization, while only 16.99% of containers processed from raw milk receiving the spore intervention would reach this level 17 d after pasteurization (a reduction of 1.25 percentage points and a 6.85% reduction). Finally, a survey of consumer milk use was conducted to determine how many consumers regularly consume fluid milk near or past the date printed on the package (i.e., code date), which revealed that over 50% of fluid milk consumers surveyed continue to consume fluid milk after this date, indicating that a considerable proportion of consumers are exposed to fluid milk that is likely to have high levels spore-forming bacterial growth and possibly associated quality defects (e.g., flavor or odor defects). This further highlights the importance of reducing spore levels in raw milk to extend pasteurized fluid milk shelf life and thereby reducing the risk of adverse consumer experiences. Processors who are interested in extending fluid milk shelf life by controlling the levels of spores in the raw milk supply should consider incentivizing low-spore raw milk through premium payments to producers.


Asunto(s)
Leche , Esporas Bacterianas , Bovinos , Femenino , Animales , Leche/microbiología , Granjas , Pasteurización , Industria Lechera , Microbiología de Alimentos
7.
J Microbiol Methods ; 191: 106350, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34710512

RESUMEN

Aerobic spore-forming Bacillales are a highly diverse and ubiquitous group that includes organisms that cause foodborne illnesses and food spoilage. Classical microbiological and biochemical identification of members of the order Bacillales represents a challenge due to the diversity of organisms in this group as well as the fact that the phenotypic-based taxonomic assignment of some named species in this group is not consistent with their phylogenomic characteristics. DNA-sequencing-based tools, on the other hand, can be fast and cost-effective, and can provide for a more reliable identification and characterization of Bacillales isolates. In comparison to 16S rDNA, rpoB was shown to better discriminate between Bacillales isolates and to allow for improved taxonomic assignment to the species level. However, the lack of a publicly accessible rpoB database, as well as the lack of standardized protocols for rpoB-based typing and strain identification, is a major challenge. Here, we report (i) the curation of a DNA sequence database for rpoB-based subtype classification of Bacillales isolates; (ii) the development of standardized protocols for generating rpoB sequence data, and a scheme for rpoB-based initial taxonomic identification of Bacillales isolates at the species level; and (iii) the integration of the database in a publicly accessible online platform that allows for the analysis of rpoB sequence data from uncharacterized Bacillales isolates. Specifically, we curated a database of DNA sequences for a 632-nt internal variable region within the rpoB gene from representative Bacillales reference type strains and a large number of isolates that we have previously isolated and characterized through multiple projects. As of May 21, 2021, the rpoB database contained more than 8350 rpoB sequences representing 1902 distinct rpoB allelic types that can be classified into 160 different genera. The database also includes 1129 rpoB sequences for representative Bacillales reference type strains as available on May 21, 2021 in the NCBI database. The rpoB database is integrated into the online Food Microbe Tracker platform (www.foodmicrobetracker.com) and can be queried using the integrated BLAST tool to initially subtype and taxonomically identify aerobic and facultative anaerobic spore-formers. While whole-genome sequencing is increasingly used in bacterial taxonomy, the rpoB sequence-based identification scheme described here provides a valuable tool as it allows for rapid and cost-effective initial isolate characterization, which can help to identify and characterize foodborne pathogens and food spoilage bacteria. In addition, the database and primers described here can also be adopted for metagenomics approaches that include rpoB as a target, improving discriminatory power and identification over what can be achieved using 16S rDNA as a target.


Asunto(s)
Bacillales/genética , Bacillales/aislamiento & purificación , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana/métodos , ARN Polimerasas Dirigidas por ADN/genética , Esporas/química , Alelos , Análisis Costo-Beneficio , Cartilla de ADN , ADN Ribosómico , Bases de Datos de Ácidos Nucleicos , Enfermedades Transmitidas por los Alimentos , Metagenómica , Filogenia , Estándares de Referencia , Secuenciación Completa del Genoma
8.
J Food Prot ; 84(9): 1496-1511, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33770185

RESUMEN

ABSTRACT: Spoilage of high-temperature, short-time (HTST)- and vat-pasteurized fluid milk due to the introduction of gram-negative bacteria postpasteurization remains a challenge for the dairy industry. Although processing facility-level practices (e.g., sanitation practices) are known to impact the frequency of postpasteurization contamination (PPC), the relative importance of different practices is not well defined, thereby affecting the ability of facilities to select intervention targets that reduce PPC and provide the greatest return on investment. Thus, the goal of this study was to use an existing longitudinal data set of bacterial spoilage indicators obtained for pasteurized fluid milk samples collected from 23 processing facilities between July 2015 and November 2017 (with three to five samplings per facility) and data from a survey on fluid milk quality management practices, to identify factors associated with PPC and rank their relative importance. This ranking was accomplished using two separate approaches: multimodel inference and conditional random forest. Data preprocessing for multimodel inference analysis showed (i) nearly all factors were significantly associated with PPC when assessed individually using univariable logistic regression and (ii) numerous pairs of factors were strongly associated with each other (Cramer's V ≥ 0.80). Multimodel inference and conditional random forest analyses identified similar drivers associated with PPC; factors identified as most important based on these analyses included cleaning and sanitation practices, activities related to good manufacturing practices, container type (a proxy for different filling equipment), in-house finished product testing, and designation of a quality department, indicating potential targets for reducing PPC. In addition, this study illustrates how machine learning approaches can be used with highly correlated and unbalanced data, as typical for food safety and quality, to facilitate improved data analyses and decision making.


Asunto(s)
Contaminación de Alimentos , Leche , Animales , Bacterias , Industria Lechera , Contaminación de Alimentos/análisis , Aprendizaje Automático
9.
J Food Prot ; 83(12): 2074-2079, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32663274

RESUMEN

ABSTRACT: Thermophilic spore-forming bacteria are found ubiquitously in natural environments and, therefore, are present in a number of agricultural food products. Spores produced by these bacteria can survive harsh environmental conditions encountered during food processing and have been implicated in food spoilage. During research efforts to develop a standardized method for enumerating spores in dairy powders, the dairy powder-associated thermophilic sporeformer Anoxybacillus flavithermus was discovered growing in uninoculated control plates of tryptic soy agar (TSA) supplemented with 1% (w/v) starch, after incubation at thermophilic (55°C) growth temperatures. This article reports the investigation into the source of this thermophilic sporeformer in TSA medium components and characterization of the bacterial isolates collected. Aqueous solutions of tryptic soy broth powder from four suppliers and four agar-agar powders (two manufacturing lots from one supplier [agar A_1 and agar A_2] and two from separate suppliers [agar B and agar C]) were subjected to two different autoclave cycle times (121°C for 15 min or 121°C for 30 min) and then prepared as TSA. After incubation at 55°C for 48 h, bacterial growth was observed only in media prepared from both lots of agar A agar-agar powder, and only when they were subjected to a 15-min autoclave cycle, implicating these powders as a source of the sporeformer contamination. Genetic characterization of 49 isolates obtained indicated the presence of five unique rpoB allelic types of the thermophilic sporeformer Geobacillus spp. in agar-agar powder from agar A. These results not only highlight the importance of microbiological controls but also alert researchers to the potential for survival of thermophilic sporeformers such as Anoxybacillus and Geobacillus in microbiological media used for detection and enumeration of these same thermophilic sporeformers in products such as dairy powders.


Asunto(s)
Leche , Esporas Bacterianas , Agar , Animales , Anoxybacillus , Bacterias , Polvos , Esporas
10.
J Dairy Sci ; 103(7): 6716-6726, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32331892

RESUMEN

The sensory quality of fluid milk is of great importance to processors and consumers. Defects in the expected odor, flavor, or body of the product can affect consumer attitudes toward the product and, ultimately, willingness to purchase the product. Although many methods of sensory evaluation have been developed, defect judging is one particular method that has been used for decades in the dairy industry for evaluating fluid milk. Defect judging is a technique whereby panelists are trained to recognize and rate a standard set of fluid milk defects that originate from various sources (e.g., microbial spoilage). This technique is primarily used in processing facilities where identification of sensory defects can alert personnel to potential quality control issues in raw material quality, processing, or good manufacturing practices. In 2014-2016, a preliminary study of defective milk judging screening and training was conducted by the Milk Quality Improvement Program at Cornell University (Ithaca, NY). The study, which included 37 staff and students from the Cornell community, used prescreenings for common odors and basic tastes, followed by uniform training to select, initially train, and retrain defect judges of unflavored high temperature, short time fluid milk. Significant improvements were seen in correct identification of defect attributes following initial training for all defect attributes, with the exception of fruity/fermented. However, following retraining, significant improvements were observed in only 2 defect attributes: cooked and milk carton. These results demonstrate that initial training is important for panelists to correctly identify fluid milk defect attributes, but that subsequent retraining should be tailored toward specific attributes. This study provides a resource for dairy industry stakeholders to use to develop relevant and efficient training methods for fluid milk defect judging panels.


Asunto(s)
Industria Lechera , Calidad de los Alimentos , Leche , Adolescente , Adulto , Animales , Comportamiento del Consumidor , Industria Lechera/educación , Industria Lechera/organización & administración , Femenino , Calor , Humanos , Juicio , Masculino , Persona de Mediana Edad , Odorantes , Gusto , Adulto Joven
11.
J Dairy Sci ; 103(5): 4088-4099, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32197847

RESUMEN

Spore-forming bacteria, such as Paenibacillus spp. and Bacillus spp., can survive HTST pasteurization in spore form and affect the quality of dairy products (e.g., spoilage in fluid milk). With the demand for higher quality finished products that have longer shelf lives and that can be distributed further and to new markets, dairy processors are becoming interested in obtaining low-spore raw milk supplies. One method to reduce spores in the dairy system will require disrupting the transmission of spores from environmental locations, where they are often found at high concentrations (e.g., manure, bedding), into bulk tank raw milk. Previous research has suggested that cow hygiene factors (e.g., udder hygiene, level of spores in milk from individual cows) are important for the transmission of spores into bulk tank raw milk, suggesting that one potential strategy to reduce spores in bulk tank milk should target cow hygiene in the parlor. To that end, we conducted a study on 5 New York dairy farms over a 15-mo period to evaluate the effect of a combination of intervention strategies, applied together, on the levels of aerobic spores in bulk tank raw milk. The combination of interventions included (1) training milking staff to focus on teat-end cleaning during milking preparation, and (2) implementing changes in laundered towel preparation (i.e., use of detergent, chlorine bleach, and drying). Study design involved collecting bulk tank raw milk samples for a week before and a week after initiating the combination of interventions (i.e., training on the importance of teat-end cleaning and towel treatment). Observations on teat-end condition, udder hygiene scores, and number of kickoffs during milking were also collected for 24 h before and after implementation of the interventions. A total of 355 bulk tank raw milk samples were collected with mean mesophilic and thermophilic spore counts of 2.1 and 2.4 cfu/mL, respectively, before interventions were applied, and 1.6 and 1.5 cfu/mL, respectively, after the interventions were applied. These reductions represent decreases of 37 and 40% in bulk tank raw milk mesophilic spores and thermophilic spores, respectively. Importantly, spore reductions were observed during each of the 3 visits once the interventions were applied, and the largest reduction in spores was recorded for the first sampling after training the milking staff. Further, when a higher proportion of very rough teat ends was observed, bulk tank milk thermophilic spore counts were significantly higher. The intervention strategies tested here represent easy-to-execute cleaning strategies (e.g., focusing on teat-end hygiene and towel washing procedures) that can reduce bulk tank raw milk spore levels. Future studies should validate the effect of on-farm interventions for reduced spore raw milk on corresponding processed product quality and will need to verify the effects of these small changes on product shelf life.


Asunto(s)
Bovinos , Industria Lechera/métodos , Higiene , Leche/microbiología , Animales , Recuento de Colonia Microbiana , Femenino , Glándulas Mamarias Animales/microbiología , New York , Paenibacillus , Pasteurización , Esporas Bacterianas
12.
mSphere ; 5(1)2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969477

RESUMEN

Paenibacillus is a spore-forming bacterial genus that is frequently isolated from fluid milk and is proposed to play a role in spoilage. To characterize the genetic and phenotypic diversity of Paenibacillus spp., we first used rpoB allelic typing data for a preexisting collection of 1,228 Paenibacillus species isolates collected from raw and processed milk, milk products, and dairy environmental sources. Whole-genome sequencing (WGS) and average nucleotide identity by BLAST (ANIb) analyses performed for a subset of 58 isolates representing unique and overrepresented rpoB allelic types in the collection revealed that these isolates represent 21 different Paenibacillus spp., with P. odorifer being the predominant species. Further genomic characterization of P. odorifer isolates identified two distinct phylogenetic clades, clades A and B, which showed significant overrepresentation of 172 and 164 ortholog clusters and 94 and 52 gene ontology (GO) terms, respectively. While nitrogen fixation genes were found in both clades, multiple genes associated with nitrate and nitrite reduction were overrepresented in clade A isolates; additional phenotypic testing demonstrated that nitrate reduction is specific to isolates in clade A. Hidden Markov models detected 9 to 10 different classes of cold shock-associated genetic elements in all P. odorifer isolates. Phenotypic testing revealed that all isolates tested here can grow in skim milk broth at 6°C, suggesting that psychrotolerance is conserved in P. odorifer Overall, our data suggest that Paenibacillus spp. isolated from milk in the United States represent broad genetic diversity, which may provide challenges for targeted-control strategies aimed at reducing fluid milk spoilage.IMPORTANCE Although Paenibacillus species isolates are frequently isolated from pasteurized fluid milk, the link between the genetic diversity and phenotypic characteristics of these isolates was not well understood, especially as some Bacillales isolated from milk are unable to grow at refrigeration temperatures. Our data demonstrate that Paenibacillus spp. isolated from fluid milk represent tremendous interspecies diversity, with P. odorifer being the predominant Paenibacillus sp. isolated. Furthermore, genetic and phenotypic data support that P. odorifer is well suited to transition from a soil-dwelling environment, where nitrogen fixation (and other nitrate/nitrite reduction pathways present only in clade A) may facilitate growth, to fluid milk, where its multiple cold shock-associated adaptations enable it to grow at refrigeration temperatures throughout the storage of milk. Therefore, efforts to reduce bacterial contamination of milk will require a systematic approach to reduce P. odorifer contamination of raw milk.


Asunto(s)
Redes y Vías Metabólicas , Leche/microbiología , Fijación del Nitrógeno , Nitrógeno/metabolismo , Paenibacillus/genética , Paenibacillus/metabolismo , Animales , Respuesta al Choque por Frío , Recuento de Colonia Microbiana , Variación Genética , Cadenas de Markov , Fenotipo , Filogenia , Esporas Bacterianas , Estados Unidos , Secuenciación Completa del Genoma
13.
J Dairy Sci ; 102(11): 9689-9701, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31447152

RESUMEN

Sporeforming bacteria are responsible for the spoilage of several dairy products including fluid milk, cheese, and products manufactured using dried dairy powders as ingredients. Sporeforming bacteria represent a considerable challenge for the dairy industry because they primarily enter the dairy product continuum at the farm, survive processing hurdles, and subsequently grow in finished products. As such, strategies to reduce spoilage due to this group of bacterial contaminants have focused on understanding the effect of farm level factors on the presence of spores in bulk tank raw milk with the goal of reducing spore levels in raw milk, as well as understanding processing contributions to spore levels and outgrowth in finished products. The goal of the current study was to investigate sources of spores in the farm environment and survey farm management practices to identify variables using multimodel inference, a model averaging approach that eliminates the uncertainty of traditional model selection approaches, that affect the presence and levels of spores in bulk tank raw milk. To this end, environmental samples including feed, bedding, manure, soil, water, and so on, and bulk tank raw milk were collected twice from 17 upstate New York dairy farms over a 19-mo period and the presence and levels of various spore types (e.g., psychrotolerant, mesophilic, thermophilic, highly heat resistant thermophilic, specially thermoresistant thermophilic, and anaerobic butyric acid bacteria) were assessed. Manure had the highest level of spores for 4 out of 5 aerobic spore types with mean counts of 5.87, 5.22, 4.35, and 3.68 log cfu/g of mesophilic, thermophilic, highly heat resistant thermophilic, and specially thermoresistant thermophilic spores, respectively. In contrast, bulk tank raw milk had mean spore levels below 1 log cfu/mL across spore types. Multimodel inference was used to determine variables (i.e., management factors, environmental spore levels, and meteorological data from each sampling) that were important for presence or levels of each spore type in bulk tank raw milk. Analyses indicated that variables of importance for more than one spore type included the residual level of spores in milk from individual cows after thorough teat cleaning and forestripping, udder hygiene, clipping or flaming of udders, spore level in feed commodities, spore level in parlor air, how often bedding was topped up or changed, the use of recycled manure bedding, and the use of sawdust bedding. These results improve our understanding of how spores transfer from environmental sources into bulk tank raw milk and provide information that can be used to design intervention trials aimed at reducing spore levels in raw milk.


Asunto(s)
Industria Lechera , Leche/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Alimentación Animal/microbiología , Animales , Bovinos , Industria Lechera/métodos , Industria Lechera/normas , Agua Potable/microbiología , Granjas , Femenino , Vivienda para Animales/normas , Higiene , Estudios Longitudinales , Estiércol/microbiología , New York , Microbiología del Suelo
14.
Front Microbiol ; 10: 1323, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31249565

RESUMEN

[This corrects the article DOI: 10.3389/fmicb.2019.00662.].

15.
J Dairy Sci ; 102(7): 5979-6000, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31128867

RESUMEN

Some gram-negative bacteria, including Pseudomonas spp., can grow at refrigeration temperatures and cause flavor, odor, and texture defects in fluid milk. Historical and modern cases exist of gray and blue color defects in fluid milk due to Pseudomonas, and several recent reports have detailed fresh cheese spoilage associated with blue-pigment-forming Pseudomonas. Our goal was to investigate the genomes of pigmented Pseudomonas isolates responsible for historical and modern pigmented spoilage of dairy products in the United States to determine the genetic basis of pigment-forming phenotypes. We performed whole genome sequencing of 9 Pseudomonas isolates: 3 from recent incidents of gray-pigmented fluid milk (Pseudomonas fluorescens group), 1 from blue-pigmented cheese (P. fluorescens group), 2 from a historical blue milk spoilage incident (Pseudomonas putida group), and 3 with no evidence for blue or gray pigment formation (2 from P. fluorescens group and 1 from Pseudomonas chlororaphis group). All 6 isolates collected from products with a gray or blue pigment defect were confirmed to produce pigment using potato dextrose agar or pasteurized milk. A subset of 2 isolates was selected for inoculation into milk and onto the surface of a model cheese for subsequent color measurement. These isolates produced different colors on potato dextrose agar, but produced nearly identical color defects in milk and on model cheese. For the same subset of 2 isolates, the gray color defect in milk was produced only in containers with ample headspace and not in full containers, suggesting that oxygen is vital for pigment formation. This work also demonstrated that a Pseudomonas isolate from cheese can produce a pigment defect in milk, and vice versa. Comparative genomics identified an accessory locus encoding tryptophan biosynthesis genes that was present in all isolates that produced gray or blue pigment under laboratory conditions and was only previously reported in 2 P. fluorescens isolates responsible for blue mozzarella in Italy. Because this locus was found in genetically distant isolates belonging to different Pseudomonas species groups, it may have been acquired via horizontal gene transfer. These data suggest that several past and present gray- or blue-pigmented dairy spoilage events share a common genetic etiology that transcends species-level identification and merits further investigation to determine mechanistic details and modes of prevention.


Asunto(s)
Queso/análisis , Genoma Bacteriano/fisiología , Leche/química , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Animales , Queso/microbiología , Color , Sitios Genéticos/fisiología , Genómica , Italia , Leche/microbiología , Fenotipo , Pigmentación , Pigmentos Biológicos/biosíntesis , Pseudomonas fluorescens/metabolismo , Pseudomonas putida/metabolismo
16.
Front Microbiol ; 10: 662, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30984157

RESUMEN

The Bacillus cereus group comprises 18 different species, including human pathogens as well as psychrotolerant strains that are an important cause of fluid milk spoilage. To enhance our understanding of the genetic markers associated with psychrotolerance (defined here as > 1 log10 increase in cfu/mL after 21 days incubation at 6°C) among dairy-associated B. cereus group isolates, we used genetic (whole genome sequencing) and phenotypic methods [growth in Skim Milk Broth (SMB) and Brain Heart Infusion (BHI) broth] to characterize 23 genetically-distinct representative isolates from a collection of 503 dairy-associated isolates. Quality threshold clustering identified three categories of psychrotolerance: (i) 14 isolates that were not psychrotolerant in BHI or SMB, (ii) 6 isolates that were psychrotolerant in BHI but not in SMB, and (iii) 2 isolates that were psychrotolerant in BHI and SMB. One isolate, which was psychrotolerant in BHI broth but was just below the cut-off of >1 log10 cfu/mL increase in SMB was not assigned to a cluster. A maximum likelihood phylogeny constructed with core genome single nucleotide polymorphisms classified all psychrotolerant isolates (i.e., psychrotolerant in BHI) into clade VI (representing B. mycoides/weihenstephanensis). Analysis of correlations between gene ortholog presence or absence patterns and psychrotolerance identified 206 orthologous gene clusters that were significantly overrepresented among psychrotolerant strains, including two clusters of cold shock proteins, which were identified in 8/9 and 7/9 psychrotolerant isolates. Gene ontology analyses revealed 36 gene ontology terms that were overrepresented in psychrotolerant isolates, including putrescine catabolic processes and putrescine transmembrane transporter activity. Lastly, Hidden Markov Model searches identified three protein family motifs, including cold shock domain proteins and fatty acid hydroxylases that were significantly associated with psychrotolerance in BHI broth. Analyses of CspA sequences revealed a positive association between psychrotolerant strains and a previously identified "psychrotolerant" CspA sequence. Overall, our data highlight genetic and phenotypic differences in psychrotolerance among B. cereus group dairy-associated isolates and show that psychrotolerance is dependent on the growth medium. We also identified a number of gene targets that could be used for specific detection or control of psychrotolerant B. cereus group isolates.

17.
J Dairy Sci ; 101(9): 7746-7756, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29908800

RESUMEN

Microbial spoilage of pasteurized fluid milk is typically due to either (1) postpasteurization contamination (PPC) with psychrotolerant gram-negative bacteria (predominantly Pseudomonas) or (2) growth of psychrotolerant sporeformers (e.g., Paenibacillus) that have the ability to survive pasteurization when present as spores in raw milk, and to subsequently grow at refrigeration temperatures. While fluid milk quality has improved over the last several decades, continued reduction of PPC is hampered by the lack of rapid, sensitive, and specific methods that allow for detection of PPC in fluid milk, with fluid milk processors still often using time-consuming methods (e.g., Moseley keeping quality test). The goal of this project was to utilize a set of commercial fluid milk samples that are characterized by a mixture of samples with PPC due to psychrotolerant gram-negative bacteria and samples with presence and growth of psychrotolerant sporeforming bacteria to evaluate different approaches for rapid detection of PPC. Comprehensive microbiological shelf-life characterization of 105 pasteurized fluid milk samples obtained from 20 dairy processing plants showed that 60/105 samples reached bacterial counts >20,000 cfu/mL over the shelf-life due to PPC with gram-negative bacteria. Among these 60 samples with evidence of gram-negative PPC spoilage over the shelf-life, 100% (60/60) showed evidence of contamination with noncoliform, non-Enterobacteriaceae (EB) gram-negative bacteria (e.g., Pseudomonas), 20% (12/60) showed evidence of contamination with coliforms, and 7% (4/60) showed evidence of contamination with noncoliform EB. Among the remaining 45 samples, 28 showed levels of gram-positive bacteria above 20,000 cfu/mL and the remaining 17 samples did not exceed 20,000 cfu/mL over the shelf-life. Evaluation of the same set of 105 samples using 6 different approaches {all possible combinations of 2 different enrichment protocols (13°C or 21°C for 18 h) and 3 different plating media [crystal violet tetrazolium agar, EB Petrifilm (3M, St. Paul, MN), and Coliform Petrifilm]} showed that enrichment at 21°C for 18 h, followed by plating on crystal violet tetrazolium agar provided for the most sensitive, accelerated detection of samples that reached >20,000 cfu/mL due to PPC with psychrotolerant gram-negatives (70% sensitivity). These results show that tests still required and traditionally used in the dairy industry (e.g., coliform testing) are not suitable for monitoring for PPC. Rather, approaches that allow for detection of all gram-negative bacteria are essential for improved detection of PPC in fluid milk.


Asunto(s)
Carga Bacteriana , Contaminación de Alimentos/análisis , Manipulación de Alimentos/métodos , Leche/microbiología , Animales , Recuento de Colonia Microbiana , Microbiología de Alimentos , Paenibacillus , Pasteurización , Temperatura
18.
J Dairy Sci ; 101(1): 861-870, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29103726

RESUMEN

Fluid milk quality in the United States has improved steadily over the last 2 decades, in large part due to the reduction in post-pasteurization contamination (PPC). Despite these improvements, some studies suggest that almost 50% of fluid milk still shows evidence of PPC with organisms that are able to grow at 6°C, even though PPC may be much less frequent in some facilities. Several gram-negative bacteria, when introduced as PPC, can grow rapidly at refrigeration temperatures around 6°C and can lead to bacterial levels above 20,000 cfu/mL (the regulatory limit for bacterial numbers in fluid milk in the United States) and spoilage that can be detected sensorially within 7 to 10 d of processing. Importantly, however, storage temperature can have a considerable effect on microbial growth, and fluid milk stored at 4°C and below may show considerably delayed onset of microbial growth and spoilage compared with samples stored at what may be considered mild abuse (6°C and above). Notable organisms that cause PPC and grow at refrigeration temperatures include psychrotolerant Enterobacteriaceae and coliforms, as well as Pseudomonas. These organisms are known to produce a variety of enzymes that lead to flavor, odor, and body defects that can ultimately affect consumer perception and willingness to buy. Detecting PPC in high temperature, short time, freshly pasteurized fluid milk can be challenging because PPC often occurs sporadically and at low levels. Additionally, indicator organisms typically used in fluid milk (i.e., coliforms) have been shown to represent only a fraction of the total PPC. Recent studies indicate that coliforms account for less than 20% of the total gram-negative organisms introduced into fluid milk after pasteurization. In contrast, Pseudomonas, which is not a coliform and therefore is not detected using coliform media, is the most commonly isolated genus in PPC fluid milk. To reduce PPC, processors must (1) use testing methods that can detect both coliforms and non-coliform gram-negatives (i.e., Pseudomonas) to understand true contamination rates and patterns, and (2) establish cleaning and sanitation protocols and employee and management behaviors that target persistent and transient PPC organisms.


Asunto(s)
Bacterias/crecimiento & desarrollo , Contaminación de Alimentos/análisis , Leche/química , Leche/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bovinos , Humanos , Pasteurización , Control de Calidad , Gusto
19.
J Dairy Sci ; 100(10): 7906-7909, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28755936

RESUMEN

Pseudomonas species are well recognized as dairy product spoilage organisms, particularly due to their ability to grow at refrigeration temperatures. Although Pseudomonas-related spoilage usually manifests itself in flavor, odor, and texture defects, which are typically due to production of bacterial enzymes, Pseudomonas is also reported to cause color defects. Because of consumer complaints, a commercial dairy company shipped 4 samples of high temperature, short time (HTST)-pasteurized milk with distinctly gray colors to our laboratory. Bacterial isolates from all 4 samples were identified as Pseudomonas azotoformans. All isolates shared the same partial 16S rDNA sequence and showed black pigmentation on Dichloran Rose Bengal Chloramphenicol agar. Inoculation of one pigment-producing P. azotoformans isolate into HTST-pasteurized fluid milk led to development of gray milk after 14 d of storage at 6°C, but only in containers that had half of the total volume filled with milk (∼500 mL of milk in ∼1,000-mL bottles). We conclusively demonstrate that Pseudomonas can cause a color defect in fluid milk that manifests in gray discoloration, adding to the palette of color defects known to be caused by Pseudomonas. This information is of considerable interest to the dairy industry, because dairy processors and others may not typically associate black or gray colors in fluid milk with the presence of microbial contaminants but rather with product tampering (e.g., addition of ink) or other inadvertent chemical contamination.


Asunto(s)
Calor , Leche/microbiología , Pasteurización , Pigmentación , Pseudomonas/aislamiento & purificación , Animales , ADN Ribosómico/genética , Pseudomonas/genética , Pseudomonas/crecimiento & desarrollo , Refrigeración
20.
Front Microbiol ; 7: 1549, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27746769

RESUMEN

Testing for coliforms has a long history in the dairy industry and has helped to identify raw milk and dairy products that may have been exposed to unsanitary conditions. Coliform standards are included in a number of regulatory documents (e.g., the U.S. Food and Drug Administration's Grade "A" Pasteurized Milk Ordinance). As a consequence, detection above a threshold of members of this method-defined, but diverse, group of bacteria can result in a wide range of regulatory outcomes. Coliforms are defined as aerobic or facultatively anaerobic, Gram negative, non-sporeforming rods capable of fermenting lactose to produce gas and acid within 48 h at 32-35°C; 19 genera currently include at least some strains that represent coliforms. Most bacterial genera that comprise the coliform group (e.g., Escherichia, Klebsiella, and Serratia) are within the family Enterobacteriaceae, while at least one genus with strains recognized as coliforms, Aeromonas, is in the family Aeromonadaceae. The presence of coliforms has long been thought to indicate fecal contamination, however, recent discoveries regarding this diverse group of bacteria indicates that only a fraction are fecal in origin, while the majority are environmental contaminants. In the US dairy industry in particular, testing for coliforms as indicators of unsanitary conditions and post-processing contamination is widespread. While coliforms are easily and rapidly detected, and are not found in pasteurized dairy products that have not been exposed to post-processing contamination, advances in knowledge of bacterial populations most commonly associated with post-processing contamination in dairy foods has led to questions regarding the utility of coliforms as indicators of unsanitary conditions for dairy products. For example, Pseudomonas spp. frequently contaminate dairy products after pasteurization, yet they are not detected by coliform tests. This review will address the role that coliforms play in raw and finished dairy products, their sources and the future of this diverse group as indicator organisms in dairy products.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA