Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Meat Sci ; 179: 108555, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34023676

RESUMEN

In a two-factorial feeding trial 120 growing-finishing pigs from eleven sires were fed on an organic (ORG) or a conventional (CON) diet. Diet ORG contained mainly oil press cakes and legume grains as protein source containing higher protein and crude fiber content along with slight deficiencies of limiting amino acids. Pigs were allocated to treatments balanced according to litter, sex and initial weight. Feed was offered ad libitum. Feed consumption, weight gain as well as carcass, meat and fat quality traits were recorded. ORG fed animals had lower weight gain, poorer feed conversion, lower loin muscle area, higher intramuscular fat content, higher ultimate pH (loin, ham), and a higher PUFA content in backfat. Despite for cook loss and dressing percentage, no sire-feed interactions were found. This indicates no need for a performance test, specifically designed for organic production. However, weight of the breeding values for the various traits and selection criteria should be adapted to the needs of organic production.


Asunto(s)
Alimentación Animal/análisis , Cruzamiento , Carne de Cerdo/análisis , Sus scrofa/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Composición Corporal , Dieta/veterinaria , Ácidos Grasos/análisis , Femenino , Masculino , Músculo Esquelético , Agricultura Orgánica , Sus scrofa/genética , Aumento de Peso
2.
Anal Bioanal Chem ; 412(25): 7017-7027, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32794007

RESUMEN

Medulloblastoma (MB), the most common malignant pediatric brain tumor, has high propensity to metastasize. Currently, the standard treatment for MB patients includes radiation therapy administered to the entire brain and spine for the purpose of treating or preventing against metastasis. Due to this aggressive treatment, the majority of long-term survivors will be left with permanent and debilitating neurocognitive impairment, for the 30-40% patients that fail to respond to treatment, all will relapse with terminal metastatic disease. An understanding of the underlying biology that drives MB metastasis is lacking, and is critically needed in order to develop targeted therapeutics for its prevention. To examine the metastatic biology of sonic hedgehog (SHH) MB, the human MB subgroup with the worst clinical outcome in children, we first generated a robust SmoA1-Math-GFP mouse model that reliably reproduces human SHH MB whereby metastases can be visualized under fluorescence microscopy. Lipidome alterations associated with metastasis were then investigated by applying ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) under positive ionization mode to primary tumor samples collected from mice without (n = 18) and with (n = 7) metastasis. Thirty-four discriminant lipids associated with SHH MB metastasis were successfully annotated, including ceramides (Cers), sphingomyelins (SMs), triacylglycerols (TGs), diacylglycerols (DGs), phosphatidylcholines (PCs), and phosphatidic acids (PAs). This study provides deeper insights into dysregulations of lipid metabolism associated with SHH MB metastatic progression, and thus serves as a guide toward novel targeted therapies.


Asunto(s)
Neoplasias Cerebelosas/metabolismo , Proteínas Hedgehog/metabolismo , Lipidómica , Meduloblastoma/metabolismo , Metástasis de la Neoplasia , Animales , Línea Celular Tumoral , Neoplasias Cerebelosas/patología , Cromatografía Líquida de Alta Presión/métodos , Meduloblastoma/patología , Ratones , Ratones Transgénicos , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
3.
Mol Cell Proteomics ; 19(4): 574-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980557

RESUMEN

In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.


Asunto(s)
Redes y Vías Metabólicas , Terapia Molecular Dirigida , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Estudios de Casos y Controles , Condrogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Metaboloma , Vía de Pentosa Fosfato , Uridina Difosfato Ácido Glucurónico/biosíntesis
4.
Anal Chem ; 91(16): 10840-10848, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31355633

RESUMEN

Visualizing the distributions of drugs and their metabolites is one of the key emerging application areas of matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) within pharmaceutical research. The success of a given MALDI-MSI experiment is ultimately determined by the ionization efficiency of the compounds of interest, which in many cases are too low to enable detection at relevant concentrations. In this work we have taken steps to address this challenge via the first application of laser-postionisation coupled with MALDI (so-called MALDI-2) to the analysis and imaging of pharmaceutical compounds. We demonstrate that MALDI-2 increased the signal intensities for 7 out of the 10 drug compounds analyzed by up to 2 orders of magnitude compared to conventional MALDI analysis. This gain in sensitivity enabled the distributions of drug compounds in both human cartilage and dog liver tissue to be visualized using MALDI-2, whereas little-to-no signal from tissue was obtained using conventional MALDI. This work demonstrates the vast potential of MALDI-2-MSI in pharmaceutical research and drug development and provides a valuable tool to broaden the application areas of MSI. Finally, in an effort to understand the ionization mechanism, we provide the first evidence that the preferential formation of [M + H]+ ions with MALDI-2 has no obvious correlation with the gas-phase proton affinity values of the analyte molecules, suggesting, as with MALDI, the occurrence of complex and yet to be elucidated ionization phenomena.


Asunto(s)
Rayos Láser , Preparaciones Farmacéuticas/análisis , Investigación Farmacéutica , Animales , Cartílago/química , Perros , Humanos , Hígado/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
5.
Sci Rep ; 9(1): 2205, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778099

RESUMEN

Treatment for medulloblastoma (MB) - the most common malignant pediatric brain tumor - includes prophylactic radiation administered to the entire brain and spine due to the high incidence of metastasis to the central nervous system. However, the majority of long-term survivors are left with permanent and debilitating neurocognitive impairments as a result of this therapy, while the remaining 30-40% of patients relapse with terminal metastatic disease. Development of more effective targeted therapies has been hindered by our lack of understanding of the underlying mechanisms regulating the metastatic process in this disease. To understand the mechanism by which MB metastasis occurs, three-dimensional matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) experiments were performed on whole brains from a mouse model of human medulloblastoma. Analyzing the tumor and surrounding normal brain in its entirety enabled the detection of low abundance, spatially-heterogeneous lipids associated with tumor development. Boundaries of metastasizing and non-metastasizing primary tumors were readily defined, leading to the identification of lipids associated with medulloblastoma metastasis, including phosphatidic acids, phosphatidylethanolamines, phosphatidylserines, and phosphoinositides. These lipids provide a greater insight into the metastatic process and may ultimately lead to the discovery of biomarkers and novel targets for the diagnosis and treatment of metastasizing MB in humans.


Asunto(s)
Imagenología Tridimensional/métodos , Metabolismo de los Lípidos , Lípidos/análisis , Meduloblastoma/diagnóstico , Meduloblastoma/metabolismo , Imagen Molecular/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Área Bajo la Curva , Biomarcadores , Modelos Animales de Enfermedad , Genes Reporteros , Humanos , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Transgénicos , Estadificación de Neoplasias
6.
Anal Chem ; 90(15): 9272-9280, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29975508

RESUMEN

Formalin-fixed neuroendocrine tissues from American cockroaches ( Periplaneta americana) embedded in paraffin more than 30 years ago were recently analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), to reveal the histological localization of more than 20 peptide ions. These represented protonated, and other cationic species of, at least, 14 known neuropeptides. The characterization of peptides in such historical samples was made possible by a novel sample preparation protocol rendering the endogenous peptides readily amenable to MSI analysis. The protocol comprises brief deparaffinization steps involving xylene and ethanol, and is further devoid of conventional aqueous washing, buffer incubations, or antigen retrieval steps. Endogenous secretory peptides that are typically highly soluble are therefore retained in-tissue with this protocol. The method is fully "top-down", that is, without laborious in situ enzymatic digestion that typically disturbs the detection of low-abundance endogenous peptides by MSI. Peptide identifications were supported by accurate mass, on-tissue tandem MS analyses, and by earlier MALDI-MSI results reported for freshly prepared P. americana samples. In contrast to earlier literature accounts stating that MALDI-MSI detection of endogenous peptides is possible only in fresh or freshly frozen tissues, or exceptionally, in formalin-fixed, paraffin-embedded (FFPE) material of less than 1 year old, we demonstrate that MALDI-MSI works for endogenous peptides in FFPE tissue of up to 30 years old. Our findings put forward a useful method for digestion-free, high-throughput analysis of endogenous peptides from FFPE samples and offer the potential for reinvestigating archived and historically interesting FFPE material, such as those stored in hospital biobanks.


Asunto(s)
Formaldehído/química , Espectrometría de Masas/métodos , Adhesión en Parafina , Péptidos/análisis , Fijación del Tejido/métodos , Animales , Cucarachas
7.
Nat Methods ; 15(7): 515-518, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29786091

RESUMEN

We report a method that enables automated data-dependent acquisition of lipid tandem mass spectrometry data in parallel with a high-resolution mass spectrometry imaging experiment. The method does not increase the total image acquisition time and is combined with automatic structural assignments. This lipidome-per-pixel approach automatically identified and validated 104 unique molecular lipids and their spatial locations from rat cerebellar tissue.


Asunto(s)
Automatización , Lípidos/química , Lípidos/clasificación , Espectrometría de Masas/métodos , Conformación de Carbohidratos
8.
Angew Chem Int Ed Engl ; 57(33): 10530-10534, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29787633

RESUMEN

Mass spectrometry imaging (MSI) enables the spatial distributions of molecules possessing different mass-to-charge ratios to be mapped within complex environments revealing regional changes at the molecular level. Even at high mass resolving power, however, these images often reflect the summed distribution of multiple isomeric molecules, each potentially possessing a unique distribution coinciding with distinct biological function(s) and metabolic origin. Herein, this chemical ambiguity is addressed through an innovative combination of ozone-induced dissociation reactions with MSI, enabling the differential imaging of isomeric lipid molecules directly from biological tissues. For the first time, we demonstrate both double bond- and sn-positional isomeric lipids exhibit distinct spatial locations within tissue. This MSI approach enables researchers to unravel local lipid molecular complexity based on both exact elemental composition and isomeric structure directly from tissues.


Asunto(s)
Ozono/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Animales , Mama/química , Mama/metabolismo , Humanos , Isomerismo , Lípidos/química
9.
Anal Chem ; 90(6): 3981-3986, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29494147

RESUMEN

Many technologies currently exist that are capable of analyzing the surface of solid samples under ambient or vacuum conditions, but they are typically limited to smooth, planar surfaces. Those few that can be applied to nonplanar surfaces, however, require manual sampling and a high degree of human intervention. Herein, we describe a new platform, Robotic Surface Analysis Mass Spectrometry (RoSA-MS), for direct surface sampling of three-dimensional (3D) objects. In RoSA-MS, a sampling probe is attached to a robotic arm that has 360° rotation through 6 individual joints. A 3D laser scanner, also attached to the robotic arm, generates a digital map of the sample surface that is used to direct a probe to specific ( x, y, z) locations. The sampling probe consists of a spring-loaded needle that briefly contacts the object surface, collecting trace amounts of material. The probe is then directed at an open port liquid sampling interface coupled to the electrospray ion source of a mass spectrometer. Material on the probe tip is dissolved by the solvent flow in the liquid interface and mass analyzed with high mass resolution and accuracy. The surface of bulky, nonplanar objects can thus be probed to produce chemical maps at the molecular level. Applications demonstrated herein include the examination of food sample surfaces, lifestyle chemistry, and chemical reactions on curved substrates. The modular design of this system also allows for modifications to the sampling probe and the ionization source, thereby expanding the potential of RoSA-MS for a great diversity of applications.

10.
Anal Chem ; 89(14): 7493-7501, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28613836

RESUMEN

Matrix-Assisted Laser Desorption Ionization, MALDI, has been increasingly used in a variety of biomedical applications, including tissue imaging of clinical tissue samples, and in drug discovery and development. These studies strongly depend on the performance of the analytical instrumentation and would drastically benefit from improved sensitivity, reproducibility, and mass/spatial resolution. In this work, we report on a novel combined MALDI/ESI interface, which was coupled to different Orbitrap mass spectrometers (Elite and Q Exactive Plus) and extensively characterized with peptide and protein standards, and in tissue imaging experiments. In our approach, MALDI is performed in the elevated pressure regime (5-8 Torr) at a spatial resolution of 15-30 µm, while ESI-generated ions are injected orthogonally to the interface axis. We have found that introduction of the MALDI-generated ions into an electrodynamic dual-funnel interface results in increased sensitivity characterized by a limit of detection of ∼400 zmol, while providing a mass measurement accuracy of 1 ppm and a mass resolving power of 120 000 in analysis of protein digests. In tissue imaging experiments, the MALDI/ESI interface has been employed in experiments with rat brain sections and was shown to be capable of visualizing and spatially characterizing very low abundance analytes separated only by 20 mDa. Comparison of imaging data has revealed excellent agreement between the MALDI and histological images.

11.
J Mater Chem B ; 5(36): 7444-7460, 2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32264222

RESUMEN

Mass spectrometry imaging (MSI) is a rapidly emerging field that is continually finding applications in new and exciting areas. The ability of MSI to measure the spatial distribution of molecules at or near the surface of complex substrates makes it an ideal candidate for many applications, including those in the sphere of materials chemistry. Continual development and optimization of both ionization sources and analyzer technologies have resulted in a wide array of MSI tools available, both commercially available and custom-built, with each configuration possessing inherent strengths and limitations. Despite the unique potential of MSI over other chemical imaging methods, their potential and application to (bio)materials science remains in our view a largely underexplored avenue. This review will discuss these techniques enabling high parallel molecular detection, focusing on those with reported uses in (bio)materials chemistry applications and highlighted with select applications. Different technologies are presented in three main sections; secondary ion mass spectrometry (SIMS) imaging, matrix-assisted laser desorption ionization (MALDI) MSI, and emerging MSI technologies with potential for biomaterial analysis. The first two sections (SIMS and MALDI) discuss well-established methods that are continually evolving both in technological advancements and in experimental versatility. In the third section, relatively new and versatile technologies capable of performing measurements under ambient conditions will be introduced, with reported applications in materials chemistry or potential applications discussed. The aim of this review is to provide a concise resource for those interested in utilizing MSI for applications such as biomimetic materials, biological/synthetic material interfaces, polymer formulation and bulk property characterization, as well as the spatial and chemical distributions of nanoparticles, or any other molecular imaging application requiring broad chemical speciation.

12.
PLoS One ; 11(5): e0154837, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27159635

RESUMEN

High-grade serous carcinoma (HGSC) is the most common and deadliest form of ovarian cancer. Yet it is largely asymptomatic in its initial stages. Studying the origin and early progression of this disease is thus critical in identifying markers for early detection and screening purposes. Tissue-based mass spectrometry imaging (MSI) can be employed as an unbiased way of examining localized metabolic changes between healthy and cancerous tissue directly, at the onset of disease. In this study, we describe MSI results from Dicer-Pten double-knockout (DKO) mice, a mouse model faithfully reproducing the clinical nature of human HGSC. By using non-negative matrix factorization (NMF) for the unsupervised analysis of desorption electrospray ionization (DESI) datasets, tissue regions are segregated based on spectral components in an unbiased manner, with alterations related to HGSC highlighted. Results obtained by combining NMF with DESI-MSI revealed several metabolic species elevated in the tumor tissue and/or surrounding blood-filled cyst including ceramides, sphingomyelins, bilirubin, cholesterol sulfate, and various lysophospholipids. Multiple metabolites identified within the imaging study were also detected at altered levels within serum in a previous metabolomic study of the same mouse model. As an example workflow, features identified in this study were used to build an oPLS-DA model capable of discriminating between DKO mice with early-stage tumors and controls with up to 88% accuracy.


Asunto(s)
Modelos Animales de Enfermedad , Espectrometría de Masas/métodos , Neoplasias Ováricas/diagnóstico por imagen , Reproducción , Animales , Femenino , Ratones , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Ribonucleasa III/genética
13.
J Am Soc Mass Spectrom ; 27(2): 359-65, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26508443

RESUMEN

Full characterization of complex reaction mixtures is necessary to understand mechanisms, optimize yields, and elucidate secondary reaction pathways. Molecular-level information for species in such mixtures can be readily obtained by coupling mass spectrometry imaging (MSI) with thin layer chromatography (TLC) separations. User-guided investigation of imaging data for mixture components with known m/z values is generally straightforward; however, spot detection for unknowns is highly tedious, and limits the applicability of MSI in conjunction with TLC. To accelerate imaging data mining, we developed DetectTLC, an approach that automatically identifies m/z values exhibiting TLC spot-like regions in MS molecular images. Furthermore, DetectTLC can also spatially match m/z values for spots acquired during alternating high and low collision-energy scans, pairing product ions with precursors to enhance structural identification. As an example, DetectTLC is applied to the identification and structural confirmation of unknown, yet significant, products of abiotic pyrazinone and aminopyrazine nucleoside analog synthesis. Graphical Abstract ᅟ.


Asunto(s)
Cromatografía en Capa Delgada/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Cromatografía en Capa Delgada/instrumentación , Mezclas Complejas/análisis , Minería de Datos , Fluorescencia , Espectrometría de Masas/métodos , Pirazinas/análisis , Pirazinas/química
15.
Rapid Commun Mass Spectrom ; 28(11): 1203-8, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760560

RESUMEN

RATIONALE: The worldwide generation of plastic electronic waste (e-waste) is reaching epic proportions. The presence of toxic brominated flame retardants (BFRs) within these materials limits their ability to be recycled, resulting in large amounts of e-waste reaching landfills. METHODS: Liquid extraction surface analysis mass spectrometry (LESA-MS) employing a chip-based nanoelectrospray coupled to a triple quadrupole mass spectrometer represents a novel control technology for directing e-waste streams for recycling. LESA-MS allows direct sampling and analysis of solid material, capable of detecting BFRs including polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBP-A), the two most common flame retardant additives currently in circulation. RESULTS: Authentic PBDE congeners and TBBP-A were deposited on glass and characterised by LESA-MS analysis. PBDEs are notoriously difficult to detect via electrospray; however, they were detected with ease by utilising a combination of nanoelectrospray and solvent doped with ammonium acetate. In situ detection of TBBP-A within plastic e-waste was also possible by performing LESA-MS on the surface of granulated material provided by a commercial waste depot. E-waste sample analysis was completely automated, with each sample analysed in less than 1 min. CONCLUSIONS: LESA-MS is fast, simple, and robust allowing unambiguous detection of a range of additives through tandem mass spectrometry. LESA-MS does not require dissolution of the solid matrix nor the sample to be present under vacuum and the use of separative techniques prior to analysis is not necessary.

16.
Anal Chim Acta ; 808: 70-82, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370094

RESUMEN

The purpose of this review is to showcase the present capabilities of ambient sampling and ionisation technologies for the analysis of polymers and polymer additives by mass spectrometry (MS) while simultaneously highlighting their advantages and limitations in a critical fashion. To qualify as an ambient ionisation technique, the method must be able to probe the surface of solid or liquid samples while operating in an open environment, allowing a variety of sample sizes, shapes, and substrate materials to be analysed. The main sections of this review will be guided by the underlying principle governing the desorption/extraction step of the analysis; liquid extraction, laser ablation, or thermal desorption, and the major component investigated, either the polymer itself or exogenous compounds (additives and contaminants) present within or on the polymer substrate. The review will conclude by summarising some of the challenges these technologies still face and possible directions that would further enhance the utility of ambient ionisation mass spectrometry as a tool for polymer analysis.

17.
Anal Chim Acta ; 808: 190-8, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24370104

RESUMEN

Changes in the molecular structure of polymer antioxidants such as hindered amine light stabilisers (HALS) is central to their efficacy in retarding polymer degradation and therefore requires careful monitoring during their in-service lifetime. The HALS, bis-(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) sebacate (TIN123) and bis-(1,2,2,6,6-pentamethyl-4-piperidinyl) sebacate (TIN292), were formulated in different polymer systems and then exposed to various curing and ageing treatments to simulate in-service use. Samples of these coatings were then analysed directly using liquid extraction surface analysis (LESA) coupled with a triple quadrupole mass spectrometer. Analysis of TIN123 formulated in a cross-linked polyester revealed that the polymer matrix protected TIN123 from undergoing extensive thermal degradation that would normally occur at 292°C, specifically, changes at the 1- and 4-positions of the piperidine groups. The effect of thermal versus photo-oxidative degradation was also compared for TIN292 formulated in polyacrylate films by monitoring the in situ conversion of N-CH3 substituted piperidines to N-H. The analysis confirmed that UV light was required for the conversion of N-CH3 moieties to N-H - a major pathway in the antioxidant protection of polymers - whereas this conversion was not observed with thermal degradation. The use of tandem mass spectrometric techniques, including precursor-ion scanning, is shown to be highly sensitive and specific for detecting molecular-level changes in HALS compounds and, when coupled with LESA, able to monitor these changes in situ with speed and reproducibility.

18.
J Pharmacol Toxicol Methods ; 67(3): 129-33, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23403246

RESUMEN

INTRODUCTION: Conscious rodent models are commonly used to assess the effects of new chemical entities on propulsion (transit) time in the gastrointestinal system. This study was designed to compare three compounds clinically known to cause constipative (morphine sulfate and propantheline bromide) and laxative (metoclopramide hydrochloride) effects on transit time in rats and mice and to note if there are differences between the species. METHODS: Compounds were dosed in conscious rats and mice. At 0.5-2.0h post dosing (estimated time to maximal plasma concentration of each compound) animals were gavaged with an appropriate volume (based on weight) of 10% activated powdered carbon suspended in 5% gum arabic. Forty-five minutes following dosing the animals were sacrificed by CO2 asphyxiation and the small intestine was removed. The position of the leading edge of the charcoal was measured relative to the total length of the intestinal segment. RESULTS: The compounds tested produced variable statistical differences in transit time between species. Morphine and propantheline produced dose-dependent increases in transit time, and metoclopramide decreased transit time, statistically significant in both rodent models. DISCUSSION: The present data demonstrate that at similar doses rats and mice can be used interchangeably for transit studies. Mice were more sensitive to transit changes at higher doses of the compounds tested.


Asunto(s)
Motilidad Gastrointestinal/efectos de los fármacos , Tránsito Gastrointestinal/efectos de los fármacos , Intestino Delgado/efectos de los fármacos , Metoclopramida/farmacología , Morfina/farmacología , Peristaltismo/efectos de los fármacos , Propantelina/farmacología , Animales , Intestino Delgado/fisiología , Masculino , Ratones , Ratas , Ratas Sprague-Dawley
19.
Rapid Commun Mass Spectrom ; 26(4): 412-8, 2012 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-22279017

RESUMEN

RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAP® 5500 mass spectrometer. The detection of TINUVIN®123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer 'blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis.


Asunto(s)
Dispositivos Laboratorio en un Chip , Extracción Líquido-Líquido/métodos , Polímeros/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Fotólisis , Polímeros/análisis , Triazinas/análisis , Triazinas/química
20.
Analyst ; 136(5): 904-12, 2011 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-21152630

RESUMEN

Detection and characterisation of structural modifications of a hindered amine light stabiliser (HALS) directly from a polyester-based coil coating have been achieved by desorption electrospray ionisation mass spectrometry (DESI-MS) for the first time. In situ detection is made possible by exposing the coating to an acetone vapour atmosphere prior to analysis. This is a gentle and non-destructive treatment that allows diffusion of analyte to the surface without promoting lateral migration. Using this approach a major structural modification of the HALS TINUVIN®123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) was discovered where one N-ether piperidine moiety (N-OC(8)H(17)) is converted to a secondary piperidine (N-H). With the use of 2-dimensional DESI-MS imaging the modification was observed to arise during high curing temperatures (ca. 260 °C) and under simulated physiological conditions (80 °C, full solar spectrum). It is proposed that the secondary piperidine derivative is a result of a highly reactive aminyl radical intermediate produced by N-O homolytic bond cleavage. The nature of the bond cleavage is also suggested by ESR spin-trapping experiments employing α-phenyl-N-tert-butyl nitrone (PBN) in toluene at 80 °C. The presence of a secondary piperidine derivative in situ and the implication of N-OR competing with NO-R bond cleavage suggest an alternative pathway for generation of the nitroxyl radical-an essential requirement in anti-oxidant activity that has not previously been described for the N-ether sub-class of HALS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...