Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 794
Filtrar
1.
Mil Med ; 189(Supplement_3): 585-591, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160856

RESUMEN

INTRODUCTION: Recovering from neuromuscular injuries or conditions can be a challenging journey that involves complex surgeries and extensive physical rehabilitation. During this process, individuals often rely on orthotic devices to support and enable movement of the affected limb. However, users have criticized current commercially available powered orthotic devices for their bulky and heavy design. To address these limitations, we developed a novel powered myoelectric elbow orthosis. MATERIALS AND METHODS: The orthosis incorporates 3 mechanisms: a solenoid brake, a Bowden cable-powered constant torque elbow mechanism, and an extension limiter. The device controller and battery are in a backpack to reduce the weight on the affected arm. We performed extensive calculations and testing to ensure that the orthosis could withstand at least 15 Nm of elbow torque. We developed a custom software effectively control the orthosis, enhancing its usability and functionality. A certified orthotist fitted a subject who had undergone a gracilis free functioning muscle transfer surgery with the device. We studied the subject under Mayo clinic IRB no. 20-006849 and obtained objective measurements to assess the orthosis's impact on upper extremity functionality during daily activities. RESULTS: The results are promising since the orthosis significantly improved elbow flexion range of motion by 40° and reduced compensatory movements at the shoulder (humerothoracic joint) by 50°. Additionally, the subject was able to perform tasks which were not possible before, such as carrying a basket with weights, highlighting the enhanced functionality provided by the orthosis. CONCLUSION: In brief, by addressing the limitations of existing devices, this novel powered myoelectric elbow orthosis offers individuals with neuromuscular injuries/conditions improved quality of life. Further research will expand the patient population and control mechanisms.


Asunto(s)
Diseño de Equipo , Aparatos Ortopédicos , Humanos , Aparatos Ortopédicos/normas , Diseño de Equipo/normas , Enfermedades Neuromusculares/fisiopatología , Enfermedades Neuromusculares/rehabilitación , Articulación del Codo/fisiopatología , Articulación del Codo/fisiología , Codo/fisiopatología
2.
FEMS Microbiol Lett ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39165128

RESUMEN

Prokaryotic genomes constantly undergo gene flux via lateral gene transfer, generating a pangenome structure consisting of a conserved core genome surrounded by a more variable accessory genome shell. Over time, flux generates change in genome content. Here we measure and compare the rate of genome flux for 5 655 prokaryotic genomes as a function of amino acid sequence divergence in 36 universally distributed proteins of the informational core (IC). We find a clock of gene content change. The long-term average rate of gene content flux is remarkably constant across all higher prokaryotic taxa sampled, whereby the size of the accessory genome-the proportion of the genome harboring gene content difference for genome pairs-varies across taxa. The proportion of species-level accessory genes per genome, varies from 0% (Chlamydia) to 30-33% (Alphaproteobacteria, Gammaproteobacteria, Clostridia). A clock-like rate of gene content change across all prokaryotic taxa sampled suggest that pangenome structure is a general feature of prokaryotic genomes and that it has been in existence since the divergence of bacteria and archaea.

3.
Res Sq ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39184089

RESUMEN

Although human cerebellum is known to be neuropathologically impaired in Alzheimer's disease (AD) and AD-related dementias (ADRD), the cell type-specific transcriptional and epigenomic changes that contribute to this pathology are not well understood. Here, we report single-nucleus multiome (snRNA-seq and snATAC-seq) analysis of 103,861 nuclei isolated from cerebellum from 9 human cases of AD/ADRD and 8 controls, and with frontal cortex of 6 AD donors for additional comparison. Using peak-to-gene linkage analysis, we identified 431,834 significant linkages between gene expression and cell subtype-specific chromatin accessibility regions enriched for candidate cis-regulatory elements (cCREs). These cCREs were associated with AD/ADRD-specific transcriptomic changes and disease-related gene regulatory networks, especially for RAR Related Orphan Receptor A (RORA) and E74 Like ETS Transcription Factor 1 (ELF1) in cerebellar Purkinje cells and granule cells, respectively. Trajectory analysis of granule cell populations further identified disease-relevant transcription factors, such as RORA, and their regulatory targets. Finally, we prioritized two likely causal genes, including Seizure Related 6 Homolog Like 2 (SEZ6L2) in Purkinje cells and KAT8 Regulatory NSL Complex Subunit 1 (KANSL1) in granule cells, through integrative analysis of cCREs derived from snATAC-seq, genome-wide AD/ADRD loci, and Hi-C looping data. This first cell subtype-specific regulatory landscape in the human cerebellum identified here offer novel genomic and epigenomic insights into the neuropathology and pathobiology of AD/ADRD and other neurological disorders if broadly applied.

4.
iScience ; 27(8): 110558, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39184444

RESUMEN

Understanding the immune profile of acute rheumatic fever (ARF), a serious post-infectious sequelae of Streptococcal pyogenes (group A Streptococcus [GAS]), could inform disease pathogenesis and management. Circulating cytokines, immunoglobulins, and complement were analyzed in participants with first-episode ARF, swab-positive GAS pharyngitis and matched healthy controls. A striking elevation of total IgG3 was observed in ARF (90% > clinical reference range for normal). ARF was also associated with an inflammatory triad with significant correlations between interleukin-6, C-reactive protein, and complement C4 absent in controls. Quantification of GAS-specific antibody responses revealed that subclass polarization was remarkably consistent across the disease spectrum; conserved protein antigens polarized to IgG1, while M-protein responses polarized to IgG3 in all groups. However, the magnitude of responses was significantly higher in ARF. Taken together, these findings emphasize the association of exaggerated GAS antibody responses, IgG3, and inflammatory cytokines in ARF and suggest IgG3 testing could beneficially augment clinical diagnosis.

5.
Front Pharmacol ; 15: 1363139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185315

RESUMEN

Advances in synthetic peptide synthesis have enabled rapid and cost-effective peptide drug manufacturing. For this reason, peptide drugs that were first produced using recombinant DNA (rDNA) technology are now being produced using solid- and liquid-phase peptide synthesis. While peptide synthesis has some advantages over rDNA expression methods, new peptide-related impurities that differ from the active pharmaceutical ingredient (API) may be generated during synthesis. These impurity byproducts of the original peptide sequence feature amino acid insertions, deletions, and side-chain modifications that may alter the immunogenicity risk profile of the drug product. Impurities resulting from synthesis have become the special focus of regulatory review and approval for human use, as outlined in the FDA's Center for Drug Evaluation and Research guidance document, "ANDAs for Certain Highly Purified Synthetic Peptide Drug Products That Refer to Listed Drugs of rDNA Origin," published in 2021. This case study illustrates how in silico and in vitro methods can be applied to assess the immunogenicity risk of impurities that may be present in synthetic generic versions of the salmon calcitonin (SCT) drug product. Sponsors of generic drug abbreviated new drug applications (ANDAs) should consider careful control of these impurities (for example, keeping the concentration of the immunogenic impurities below the cut-off recommended by FDA regulators). Twenty example SCT impurities were analyzed using in silico tools and assessed as having slightly more or less immunogenic risk potential relative to the SCT API peptide. Class II human leukocyte antigen (HLA)-binding assays provided independent confirmation that a 9-mer sequence present in the C-terminus of SCT binds promiscuously to multiple HLA DR alleles, while T-cell assays confirmed the expected T-cell responses to SCT and selected impurities. In silico analysis combined with in vitro assays that directly compare the API to each individual impurity peptide may be a useful approach for assessing the potential immunogenic risk posed by peptide impurities that are present in generic drug products.

6.
J Biol Chem ; 300(9): 107607, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39084460

RESUMEN

The N-terminal region of the human lysine-specific demethylase 1 (LSD1) has no predicted structural elements, contains a nuclear localization signal (NLS), undergoes multiple posttranslational modifications (PTMs), and acts as a protein-protein interaction hub. This intrinsically disordered region (IDR) extends from core LSD1 structure, resides atop the catalytic active site, and is known to be dispensable for catalysis. Here, we show differential nucleosome binding between the full-length and an N terminus deleted LSD1 and identify that a conserved NLS and PTM containing element of the N terminus contains an alpha helical structure, and that this conserved element impacts demethylation. Enzyme assays reveal that LSD1's own electropositive NLS amino acids 107 to 120 inhibit demethylation activity on a model histone 3 lysine 4 dimethyl (H3K4me2) peptide (Kiapp âˆ¼ 3.3 µM) and histone 3 lysine 4 dimethyl nucleosome substrates (IC50 ∼ 30.4 µM), likely mimicking the histone H3 tail. Further, when the identical, inhibitory NLS region contains phosphomimetic modifications, inhibition is partially relieved. Based upon these results and biophysical data, a regulatory mechanism for the LSD1-catalyzed demethylation reaction is proposed whereby NLS-mediated autoinhibition can occur through electrostatic interactions, and be partially relieved through phosphorylation that occurs proximal to the NLS. Taken together, the results highlight a dynamic and synergistic role for PTMs, intrinsically disordered regions, and structured regions near LSD1 active site and introduces the notion that phosphorylated mediated NLS regions can function to fine-tune chromatin modifying enzyme activity.

7.
Environ Toxicol Chem ; 43(9): 2058-2070, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980316

RESUMEN

The toxicity of neonicotinoids and many of their replacement insecticides to nontarget soil invertebrates such as earthworms has previously been established. However, the long-term effects of these substances on these organisms are largely unknown. In the field of soil ecotoxicology, lumbricid earthworms such as Eisenia andrei are used extensively due to the availability of standardized test methods and their adaptability to laboratory culture and testing. Multigenerational studies have gained popularity and attention in recent years, with a shift toward the use of long-term assays and lower concentrations of test chemicals. The use of exposure concentrations that include those measured in a monitoring program carried out by the Government of Ontario presents a realistic exposure scenario that may not show significant effects in contemporary, shorter term studies. We used current standardized test methods as a basis for the development of multigenerational studies on E. andrei. The effects of exposure to a single application of the insecticides thiamethoxam and cyantraniliprole on the survival and reproduction of E. andrei were observed over three (thiamethoxam) or two (cyantraniliprole) generations using consecutive reproduction tests. No significant impacts on adult survival were reported in any generation for either insecticide, whereas reproduction decreased between the first and second generations in the thiamethoxam test, with median effective concentration (EC50) values of 0.022 mg/kg dry weight reported for the first generation compared with 0.002 mg/kg dry weight in the second generation. For cyantraniliprole, an EC50 of 0.064 was determined for the first generation compared with 0.016 mg/kg dry weight in the second generation. A third generation was completed for the thiamethoxam test, and a significant decrease in reproduction was observed in all treatments and controls compared with previous generations. No significant difference between thiamethoxam treatments and the control treatment was reported for the third generation. Collectively, these data indicate that exposure of oligochaetes to these two insecticides at concentrations representative of field conditions may result in long-term stresses. Environ Toxicol Chem 2024;43:2058-2070. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Insecticidas , Oligoquetos , Reproducción , Oligoquetos/efectos de los fármacos , Animales , Insecticidas/toxicidad , Reproducción/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Tiametoxam/toxicidad
8.
Mol Plant ; 17(9): 1458-1471, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39014898

RESUMEN

Plants exploit phenotypic plasticity to adapt their growth and development to prevailing environmental conditions. Interpretation of light and temperature signals is aided by the circadian system, which provides a temporal context. Phenotypic plasticity provides a selective and competitive advantage in nature but is obstructive during large-scale, intensive agricultural practices since economically important traits (including vegetative growth and flowering time) can vary widely depending on local environmental conditions. This prevents accurate prediction of harvesting times and produces a variable crop. In this study, we sought to restrict phenotypic plasticity and circadian regulation by manipulating signaling systems that govern plants' responses to environmental signals. Mathematical modeling of plant growth and development predicted reduced plant responses to changing environments when circadian and light signaling pathways were manipulated. We tested this prediction by utilizing a constitutively active allele of the plant photoreceptor phytochrome B, along with disruption of the circadian system via mutation of EARLY FLOWERING3. We found that these manipulations produced plants that are less responsive to light and temperature cues and thus fail to anticipate dawn. These engineered plants have uniform vegetative growth and flowering time, demonstrating how phenotypic plasticity can be limited while maintaining plant productivity. This has significant implications for future agriculture in both open fields and controlled environments.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Fitocromo B , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Ritmo Circadiano/fisiología , Fitocromo B/metabolismo , Fitocromo B/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Luz , Transducción de Señal , Fenotipo , Regulación de la Expresión Génica de las Plantas , Flores/crecimiento & desarrollo , Flores/genética , Flores/fisiología , Flores/efectos de la radiación , Temperatura , Ambiente
9.
Biochim Biophys Acta Bioenerg ; 1865(4): 149495, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004113

RESUMEN

Current views of O2 accumulation in Earth history depict three phases: The onset of O2 production by ∼2.4 billion years ago; 2 billion years of stasis at ∼1 % of modern atmospheric levels; and a rising phase, starting about 500 million years ago, in which oxygen eventually reached modern values. Purely geochemical mechanisms have been proposed to account for this tripartite time course of Earth oxygenation. In particular the second phase, the long period of stasis between the advent of O2 and the late rise to modern levels, has posed a puzzle. Proposed solutions involve Earth processes (geochemical, ecosystem, day length). Here we suggest that Earth oxygenation was not determined by geochemical processes. Rather it resulted from emergent biological innovations associated with photosynthesis and the activity of only three enzymes: 1) The oxygen evolving complex of cyanobacteria that makes O2; 2) Nitrogenase, with its inhibition by O2 causing two billion years of oxygen level stasis; 3) Cellulose synthase of land plants, which caused mass deposition and burial of carbon, thus removing an oxygen sink and therefore increasing atmospheric O2. These three enzymes are endogenously produced by, and contained within, cells that have the capacity for exponential growth. The catalytic properties of these three enzymes paved the path of Earth's atmospheric oxygenation, requiring no help from Earth other than the provision of water, CO2, salts, colonizable habitats, and sunlight.

10.
Acc Chem Res ; 57(16): 2267-2278, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39083571

RESUMEN

ConspectusLife is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO2 fixation. In the acetyl-CoA pathway, electrons from H2 reduce CO2 to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H2 and CO2 react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H2 and CO2 to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H2-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO2 with H2 in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H2 as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H2 can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, S-adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H2 and CO2 to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H2-producing, serpentinizing hydrothermal vent.


Asunto(s)
Acetilcoenzima A , Acetilcoenzima A/metabolismo , Acetilcoenzima A/química , Metano/química , Metano/metabolismo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/química , Hidrógeno/química , Hidrógeno/metabolismo , Termodinámica
11.
Environ Toxicol Chem ; 43(8): 1820-1835, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837715

RESUMEN

Springtails (subclass: Collembola) represent one of the most extensively studied invertebrate groups in soil ecotoxicology. This is because of their ease of laboratory culture, significant ecological role, and sensitivity to environmental contaminants. Folsomia candida (family: Isotomidae) is a globally widespread parthenogenetic species that is prevalent in laboratory toxicity testing with springtails. Conversely, Arrhopalites caecus (family: Arrhopalitidae), a parthenogenic globular springtail species, remains untested in soil ecotoxicology. This species is found in diverse habitats, including cave systems and forest leaf litter, and has a global distribution. The sensitivity of A. caecus to environmental contaminants, such as neonicotinoid insecticides, as well as its life history and optimal culturing conditions, are largely unknown. The present study describes the establishment of a pure A. caecus laboratory culture and characterization of its life cycle and culturing conditions. We assessed the sensitivity of A. caecus to various insecticides, including exposures to the neonicotinoid thiamethoxam in soil and through a novel feeding assay as well as to clothianidin and cyantraniliprole in spiked soil exposures. In 7- and 14-day exposures to thiamethoxam in agricultural soil, the 50% lethal concentration (LC50) values were determined to be 0.129 mg/kg dry weight and 0.010 mg/kg dry weight, respectively. The 14-day LC50 for exposure to thiamethoxam via spiked food was determined to be 0.307 mg/kg dry weight. In addition, the 28-day 50% effect concentration for inhibition of juvenile production from cyantraniliprole exposure in the same soil type was 0.055 mg/kg dry weight. Challenges encountered in using this species included susceptibility to mite infestation and low adult survival rates in the 28-day cyantraniliprole test. Environ Toxicol Chem 2024;43:1820-1835. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Artrópodos , Insecticidas , Contaminantes del Suelo , Pruebas de Toxicidad , Animales , Artrópodos/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Insecticidas/toxicidad , Neonicotinoides/toxicidad , Suelo/química , Tiametoxam/toxicidad
12.
Radiat Oncol ; 19(1): 69, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822385

RESUMEN

BACKGROUND: Multiple artificial intelligence (AI)-based autocontouring solutions have become available, each promising high accuracy and time savings compared with manual contouring. Before implementing AI-driven autocontouring into clinical practice, three commercially available CT-based solutions were evaluated. MATERIALS AND METHODS: The following solutions were evaluated in this work: MIM-ProtégéAI+ (MIM), Radformation-AutoContour (RAD), and Siemens-DirectORGANS (SIE). Sixteen organs were identified that could be contoured by all solutions. For each organ, ten patients that had manually generated contours approved by the treating physician (AP) were identified, totaling forty-seven different patients. CT scans in the supine position were acquired using a Siemens-SOMATOMgo 64-slice helical scanner and used to generate autocontours. Physician scoring of contour accuracy was performed by at least three physicians using a five-point Likert scale. Dice similarity coefficient (DSC), Hausdorff distance (HD) and mean distance to agreement (MDA) were calculated comparing AI contours to "ground truth" AP contours. RESULTS: The average physician score ranged from 1.00, indicating that all physicians reviewed the contour as clinically acceptable with no modifications necessary, to 3.70, indicating changes are required and that the time taken to modify the structures would likely take as long or longer than manually generating the contour. When averaged across all sixteen structures, the AP contours had a physician score of 2.02, MIM 2.07, RAD 1.96 and SIE 1.99. DSC ranged from 0.37 to 0.98, with 41/48 (85.4%) contours having an average DSC ≥ 0.7. Average HD ranged from 2.9 to 43.3 mm. Average MDA ranged from 0.6 to 26.1 mm. CONCLUSIONS: The results of our comparison demonstrate that each vendor's AI contouring solution exhibited capabilities similar to those of manual contouring. There were a small number of cases where unusual anatomy led to poor scores with one or more of the solutions. The consistency and comparable performance of all three vendors' solutions suggest that radiation oncology centers can confidently choose any of the evaluated solutions based on individual preferences, resource availability, and compatibility with their existing clinical workflows. Although AI-based contouring may result in high-quality contours for the majority of patients, a minority of patients require manual contouring and more in-depth physician review.


Asunto(s)
Inteligencia Artificial , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
13.
J Am Chem Soc ; 146(19): 12889-12894, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690854

RESUMEN

We have successfully achieved selective and efficient functionalization of sheet edges in microcrystalline multilayer γ-graphyne through two methods: cross-coupling with residual bromide edge groups and copper-catalyzed azide-alkyne cycloaddition (CuAAC) with edge terminal alkyne groups. This modification significantly enhances the ease of mechanical exfoliation and dispersibility of the sheets of γ-graphyne. Specifically, C18-grafted γ-graphyne forms stable dispersions in compatible organic solvents, allowing for the imaging of atomically thin layers of γ-graphyne for the first time. Additionally, we have discovered that phenylacetylide edge groups alter the preferred stacking mode of γ-graphyne sheets. Few-layer flakes of Ph-edge γ-graphyne exhibit a preference for the R3m space group, contrasting with the aperiodic stacking of Br-edge γ-graphyne. These results open the door for scalable exfoliation of few-layer flakes of γ-graphyne with a high aspect ratio, enabling potential applications in carbon electronics.

14.
FEBS Lett ; 598(14): 1692-1714, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750628

RESUMEN

Molecular oxygen is a stable diradical. All O2-dependent enzymes employ a radical mechanism. Generated by cyanobacteria, O2 started accumulating on Earth 2.4 billion years ago. Its evolutionary impact is traditionally sought in respiration and energy yield. We mapped 365 O2-dependent enzymatic reactions of prokaryotes to phylogenies for the corresponding 792 protein families. The main physiological adaptations imparted by O2-dependent enzymes were not energy conservation, but novel organic substrate oxidations and O2-dependent, hence O2-tolerant, alternative pathways for O2-inhibited reactions. Oxygen-dependent enzymes evolved in ancestrally anaerobic pathways for essential cofactor biosynthesis including NAD+, pyridoxal, thiamine, ubiquinone, cobalamin, heme, and chlorophyll. These innovations allowed prokaryotes to synthesize essential cofactors in O2-containing environments, a prerequisite for the later emergence of aerobic respiratory chains.


Asunto(s)
Oxígeno , Oxígeno/metabolismo , Aerobiosis , Filogenia , Células Procariotas/metabolismo , Evolución Molecular , Oxidación-Reducción , Enzimas/metabolismo , Enzimas/genética
15.
Bioorg Med Chem ; 107: 117751, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762979

RESUMEN

In previous studies, we developed anti-trypanosome tubulin inhibitors with promising in vitro selectivity and activity against Human African Trypanosomiasis (HAT). However, for such agents, oral activity is crucial. This study focused on further optimizing these compounds to enhance their ligand efficiency, aiming to reduce bulkiness and hydrophobicity, which should improve solubility and, consequently, oral bioavailability. Using Trypanosoma brucei brucei cells as the parasite model and human normal kidney cells and mouse macrophage cells as the host model, we evaluated 30 new analogs synthesized through combinatorial chemistry. These analogs have fewer aromatic moieties and lower molecular weights than their predecessors. Several new analogs demonstrated IC50s in the low micromolar range, effectively inhibiting trypanosome cell growth without harming mammalian cells at the same concentration. We conducted a detailed structure-activity relationship (SAR) analysis and a docking study to assess the compounds' binding affinity to trypanosome tubulin homolog. The results revealed a correlation between binding energy and anti-Trypanosoma activity. Importantly, compound 7 displayed significant oral activity, effectively inhibiting trypanosome cell proliferation in mice.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Relación Estructura-Actividad , Ratones , Humanos , Administración Oral , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Dosis-Respuesta a Droga , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Tripanosomiasis Africana/tratamiento farmacológico
16.
Chem ; 10(5): 1528-1540, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38803519

RESUMEN

Hydrogen (H2) has powered microbial metabolism for roughly 4 billion years. The recent discovery that it also fuels geochemical analogs of the most ancient biological carbon fixation pathway sheds light on the origin of metabolism. However, it remains unclear whether H2 can sustain more complex nonenzymatic reaction networks. Here, we show that H2 drives the nonenzymatic reductive amination of six biological ketoacids and glyoxylate to give the corresponding amino acids in good yields using ammonium concentrations ranging from 6 to 150 mM. Catalytic amounts of nickel or ground meteorites enable these reactions at 22°C and pH 8. The same conditions promote an H2-dependent ketoacid-forming reductive aldol chemistry that co-occurs with reductive amination, producing a continuous reaction network resembling amino acid synthesis in the metabolic core of ancient microbes. The results support the hypothesis that the earliest biochemical networks could have emerged without enzymes or RNA.

17.
Front Immunol ; 15: 1377911, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812524

RESUMEN

Hypothesis: While conventional in silico immunogenicity risk assessments focus on measuring immunogenicity based on the potential of therapeutic proteins to be processed and presented by a global population-wide set of human leukocyte antigen (HLA) alleles to T cells, future refinements might adjust for HLA allele frequencies in different geographic regions or populations, as well for as individuals in those populations. Adjustment by HLA allele distribution may reveal risk patterns that are specific to population groups or individuals, which current methods that rely on global-population HLA prevalence may obscure. Key findings: This analysis uses HLA frequency-weighted binding predictions to define immunogenicity risk for global and sub-global populations. A comparison of assessments tuned for North American/European versus Japanese/Asian populations suggests that the potential for anti-therapeutic responses (anti-therapeutic antibodies or ATA) for several commonly prescribed Rheumatoid Arthritis (RA) therapeutic biologics may differ, significantly, between the Caucasian and Japanese populations. This appears to align with reports of differing product-related immunogenicity that is observed in different populations. Relevance to clinical practice: Further definition of population-level (regional) and individual patient-specific immunogenic risk profiles may enable prescription of the RA therapeutic with the highest probability of success to each patient, depending on their population of origin and/or their individual HLA background. Furthermore, HLA-specific immunogenicity outcomes data are limited, thus there is a need to expand HLA-association studies that examine the relationship between HLA haplotype and ATA in the clinic.


Asunto(s)
Artritis Reumatoide , Productos Biológicos , Frecuencia de los Genes , Antígenos HLA-DR , Humanos , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Antígenos HLA-DR/inmunología , Antígenos HLA-DR/genética , Antirreumáticos/uso terapéutico , Antirreumáticos/efectos adversos , Alelos
18.
Int J Oral Maxillofac Implants ; (3): 409-425, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38607360

RESUMEN

PURPOSE: To compare the outcomes of immediate and delayed implant placement with bone-level tapered implants. MATERIALS AND METHODS: In this post-market, multicenter prospective randomized controlled study with a primary endpoint of 1 year, 53 patients were randomized to receive either immediate implant placement (test group) or delayed implant placement (control group). The mean crestal bone level changes from implant loading to 12 months postloading were measured using standardized digital periapical radiographs. Changes in facial plate thickness (as measured on CBCT images), implant success and survival, implant stability, soft tissue changes, patient-centered outcomes, and adverse events were measured to assess outcomes between the test and control treatments at 12 months postloading. RESULTS: Of the original 53 patients, 46 patients completed the study (23 in each group). Mean bone changes from loading to the 12-month follow-up were recorded with no statistically significant difference (P = .950) between the groups. The hypothesis was confirmed that immediate implant placement (test) in extraction sockets produces in similar outcomes as delayed placement (control). The test group was found to be similar to the control group (P = .022) in terms of mean changes in facial plate thickness. Implant survival and success were 95.8% in the test group and 92% in the control group. Stability in the control group was superior at the time of surgery, but there was no difference between the groups at implant loading, producing a nonsignificant P value of .563). CONCLUSIONS: This randomized controlled multicenter study showed comparable outcomes 1 year after prosthetic loading in the immediate and delayed implant placement groups.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Implantes Dentales de Diente Único , Carga Inmediata del Implante Dental , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Adulto , Resultado del Tratamiento , Carga Inmediata del Implante Dental/métodos , Diseño de Prótesis Dental , Implantación Dental Endoósea/métodos , Anciano , Alveolo Dental/cirugía
19.
MAbs ; 16(1): 2333729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38536724

RESUMEN

In silico immunogenicity risk assessment has been an important step in the development path for many biologic therapeutics, including monoclonal antibodies. Even if the source of a given biologic is 'fully human', T cell epitopes that are contained in the sequences of the biologic may activate the immune system, enabling the development of anti-drug antibodies that can reduce drug efficacy and may contribute to adverse events. Computational tools that identify T cell epitopes from primary amino acid sequences have been used to assess the immunogenic potential of therapeutic candidates for several decades. To facilitate larger scale analyses and accelerate preclinical immunogenicity risk assessment, our group developed an integrated web-based platform called ISPRI, (Immunogenicity Screening and Protein Re-engineering Interface) that provides hands-on access through a secure web-based interface for scientists working in large and mid-sized biotech companies in the US, Europe, and Japan. This toolkit has evolved and now contains an array of algorithms that can be used individually and/or consecutively for immunogenicity assessment and protein engineering. Most analyses start with the advanced epitope mapping tool (EpiMatrix), then proceed to identify epitope clusters using ClustiMer, and then use a tool called JanusMatrix to define whether any of the T cell epitope clusters may generate a regulatory T cell response which may diminish or eliminate anti-drug antibody formation. Candidates can be compared to similar products on a normalized immunogenicity scale. Should modifications to the biologic sequence be an option, a tool for moderating putative immunogenicity by editing T cell epitopes out of the sequence is available (OptiMatrix). Although this perspective discusses the in-silico immunogenicity risk assessment for monoclonal antibodies, bi-specifics, multi-specifics, and antibody-drug conjugates, the analysis of additional therapeutic modalities such as enzyme replacement proteins, blood factor proteins, CAR-T, gene therapy products, and peptide drugs is also made available on the ISPRI platform.


ISPRI (Interactive Screening and Protein Reengineering Interface): Integrated, cloud-based, comprehensive toolkit for Immunogenicity Risk Assessment.EpiMatrix Immunogenicity Score: Combined T effector and Treg Epitope Content per unit protein.Tregitopes: Treg Epitopes found in IgG Framework that have been shown to modulate antigen-specific effector T cell responses.ClustiMer: Tool for identifying epitope rich polypeptides from within a given protein sequence.JanusMatrix: Tool for Predicting Tolerance, Putative Treg Epitopes, and Anti-self-immune responses.OptiMatrix: Tool for modifying T cell epitope sequences to reduce (or enhance) MHC binding.


Asunto(s)
Productos Biológicos , Epítopos de Linfocito T , Humanos , Péptidos , Secuencia de Aminoácidos , Anticuerpos Monoclonales/uso terapéutico
20.
J Prosthodont ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483093

RESUMEN

PURPOSE: The purpose of this study was to evaluate the flexural strength (FS), flexural modulus (FM), and fatigue limit (FL) of 3D-printed resin-based polymers and composites and compare them to 3D-printed composites. MATERIALS AND METHODS: A bar-shaped specimen (25 × 2 × 2 mm) was CAD designed according to ISO 4049:2019, and 60 duplicates of the 3D model were nested at a 45-degree angle with the printing platform and 3D-printed with three materials: denture teeth resin (Denture Teeth, Formlabs), temporary crown and bridge resin (Temporary CB, Formlabs), and composite (Flexcera Smile Ultra+, Desktop Health). The 3D model was also imported into a dental CAM software, duplicated 60 times, nested, and milled from a 3D-milled composite puck (Ivotion Denture Teeth, Ivoclar). All specimens were post-processed following the manufacturer's recommendation. The specimens were then subjected to a three-point bending test until failure using a Universal Testing Machine at a crosshead speed of 0.75 mm/min, and FS and FM were calculated. The remaining thirty specimens were tested for Fatigue Limit using the staircase approach starting at 50% FS maximum up to 1.2 M cycles at 10 Hz. The data were analyzed using one-way ANOVA and the Weibull distribution (α = 0.05). RESULTS: The results showed that Ivotion and Flexcera had higher FS (110.3 ± 7.1 MPa and 107.6 ± 6.4 MPa, respectively) and FM (3.3 ± 0.1 GPa and 3.0 ± 0.2 GPa, respectively) compared to the 3D-printed Denture Teeth (FS = 66.4 ± 18.5 MPa and FM = 1.8 ± 0.1 GPa) and Temporary CB (FS = 79.6 ± 12.1 MPa and FM = 2.7 ± 0.4 GPa). Weibull analysis showed that the Ivotion and Flexcera had a more uniform and narrower spatial distribution of defects (m: 27.98 and 29.19) than the printed materials, which had m values of 8.17 and 4.11 for Temporary CB and Denture Teeth, respectively. Although no differences were found in the static properties (FS and FM) between Ivotion and Flexcera, Ivotion presented a higher endurance limit than Flexcera (51.43 vs. 40.95 MPa). The Temporary CB presented 21.08 MPa and Denture Teeth presented 17.80 MPa of endurance limit. CONCLUSIONS: 3D-milled (Ivotion Denture Teeth) and 3D-printed (Flexcera Smile Ultra+) composites outperformed 3D-printed resins (Formlabs Denture Teeth and Temporary Crown & Bridge) in terms of flexural properties and fatigue resistance. 3D-milled (Ivotion) and 3D-printed (Flexcera) composites exhibited similar flexural properties, but 3D-milled composites showed a 25% higher fatigue endurance limit, suggesting improved clinical longevity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA