Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 4(1): 1014, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462519

RESUMEN

Prostate cancer (PCa) is the second most commonly diagnosed cancer in men, and bone is the most frequent site of metastasis. The tumor microenvironment (TME) impacts tumor growth and metastasis, yet the role of the TME in PCa metastasis to bone is not fully understood. We used a tissue-engineered xenograft approach in NOD-scid IL2Rγnull (NSG) mice to incorporate two levels of humanization; the primary tumor and TME, and the secondary metastatic bone organ. Bioluminescent imaging, histology, and immunohistochemistry were used to study metastasis of human PC-3 and LNCaP PCa cells from the prostate to tissue-engineered bone. Here we show pre-seeding scaffolds with human osteoblasts increases the human cellular and extracellular matrix content of bone constructs, compared to unseeded scaffolds. The humanized prostate TME showed a trend to decrease metastasis of PC-3 PCa cells to the tissue-engineered bone, but did not affect the metastatic potential of PCa cells to the endogenous murine bones or organs. On the other hand, the humanized TME enhanced LNCaP tumor growth and metastasis to humanized and murine bone. Together this demonstrates the importance of the TME in PCa bone tropism, although further investigations are needed to delineate specific roles of the TME components in this context.


Asunto(s)
Neoplasias Óseas/secundario , Neoplasias de la Próstata/patología , Ingeniería de Tejidos , Microambiente Tumoral , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia
2.
Acta Biomater ; 89: 372-381, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30836200

RESUMEN

The quest for predictive tumor markers for osteosarcoma (OS) has not well progressed over the last two decades due to a lack of preclinical models. The aim of this study was to investigate if microenvironmental modifications in an original humanized in vivo model alter the expression of OS tumor markers. Human bone micro-chips and bone marrow, harvested during hip arthroplasty, were implanted at the flanks of NOD/scid mice. We administered recombinant human bone morphogenetic protein 7 (rhBMP-7) in human bone micro-chips/bone marrow group I in order to modulate bone matrix and bone marrow humanization. Ten weeks post-implantation, human Luc-SAOS-2 OS cells were injected into the humanized tissue-engineered bone organs (hTEBOs). Tumors were harvested 5 weeks post-implantation to determine the expression of the previously described OS markers ezrin, periostin, VEGF, HIF1α and HIF2α. Representation of these proteins was analyzed in two different OS patient cohorts. Ezrin was downregulated in OS in hTEBOs with rhBMP-7, whereas HIF2α was significantly upregulated in comparison to hTEBOs without rhBMP-7. The expression of periostin, VEGF and HIF1α did not differ significantly between both groups. HIF2α was consistently present in OS patients and dependent on tumor site and clinical stage. OS patients post-chemotherapy had suppressed levels of HIF2α. In conclusion, we demonstrated the overall expression of OS-related factors in a preclinical model, which is based on a humanized bone organ. Our preclinical research results and analysis of two comprehensive patient cohorts imply that HIF2α is a potential prognostic marker and/or therapeutic target. STATEMENT OF SIGNIFICANCE: This study demonstrates the clinical relevance of the humanized organ bone microenvironment in osteosarcoma research and validates the expression of tumor markers, especially HIF2α. The convergence of clinically proven bone engineering concepts for the development of humanized mice models is a new starting point for investigations of OS-related marker expression. The validation and first data set in such a model let one conclude that further clinical studies on the role of HIF2α as a prognostic marker and its potential as therapeutic target is a condition sine qua non.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias Óseas/metabolismo , Proteínas de Neoplasias/metabolismo , Osteosarcoma/metabolismo , Microambiente Tumoral , Animales , Proteína Morfogenética Ósea 7/farmacología , Neoplasias Óseas/patología , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Osteosarcoma/patología
3.
Biomaterials ; 171: 230-246, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29705656

RESUMEN

BACKGROUND: Existing preclinical murine models often fail to predict effects of anti-cancer drugs. In order to minimize interspecies-differences between murine hosts and human bone tumors of in vivo xenograft platforms, we tissue-engineered a novel orthotopic humanized bone model. METHODS: Orthotopic humanized tissue engineered bone constructs (ohTEBC) were fabricated by 3D printing of medical-grade polycaprolactone scaffolds, which were seeded with human osteoblasts and embedded within polyethylene glycol-based hydrogels containing human umbilical vein endothelial cells (HUVECs). Constructs were then implanted at the femur of NOD-scid and NSG mice. NSG mice were then bone marrow transplanted with human CD34 + cells. Human osteosarcoma (OS) growth was induced within the ohTEBCs by direct injection of Luc-SAOS-2 cells. Tissues were harvested for bone matrix and marrow morphology analysis as well as tumor biology investigations. Tumor marker expression was analyzed in the humanized OS and correlated with the expression in 68 OS patients utilizing tissue micro arrays (TMA). RESULTS: After harvesting the femurs micro computed tomography and immunohistochemical staining showed an organ, which had all features of human bone. Around the original mouse femur new bone trabeculae have formed surrounded by a bone cortex. Staining for human specific (hs) collagen type-I (hs Col-I) showed human extracellular bone matrix production. The presence of nuclei staining positive for human nuclear mitotic apparatus protein 1 (hs NuMa) proved the osteocytes residing within the bone matrix were of human origin. Flow cytometry verified the presence of human hematopoietic cells. After injection of Luc-SAOS-2 cells a primary tumor and lung metastasis developed. After euthanization histological analysis showed pathognomic features of osteoblastic OS. Furthermore, the tumor utilized the previously implanted HUVECS for angiogenesis. Tumor marker expression was similar to human patients. Moreover, the recently discovered musculoskeletal gene C12orf29 was expressed in the most common subtypes of OS patient samples. CONCLUSION: OhTEBCs represent a suitable orthotopic microenvironment for humanized OS growth and offers a new translational direction, as the femur is the most common location of OS. The newly developed and validated preclinical model allows controlled and predictive marker studies of primary bone tumors and other bone malignancies.


Asunto(s)
Médula Ósea/patología , Huesos/patología , Terapia Molecular Dirigida , Osteosarcoma/terapia , Animales , Antígenos CD34/metabolismo , Biomarcadores de Tumor/metabolismo , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Procedimientos Quirúrgicos Mínimamente Invasivos , Neovascularización Fisiológica , Medicina Regenerativa , Ingeniería de Tejidos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Protoc ; 12(4): 639-663, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28253234

RESUMEN

Current in vivo models for investigating human primary bone tumors and cancer metastasis to the bone rely on the injection of human cancer cells into the mouse skeleton. This approach does not mimic species-specific mechanisms occurring in human diseases and may preclude successful clinical translation. We have developed a protocol to engineer humanized bone within immunodeficient hosts, which can be adapted to study the interactions between human cancer cells and a humanized bone microenvironment in vivo. A researcher trained in the principles of tissue engineering will be able to execute the protocol and yield study results within 4-6 months. Additive biomanufactured scaffolds seeded and cultured with human bone-forming cells are implanted ectopically in combination with osteogenic factors into mice to generate a physiological bone 'organ', which is partially humanized. The model comprises human bone cells and secreted extracellular matrix (ECM); however, other components of the engineered tissue, such as the vasculature, are of murine origin. The model can be further humanized through the engraftment of human hematopoietic stem cells (HSCs) that can lead to human hematopoiesis within the murine host. The humanized organ bone model has been well characterized and validated and allows dissection of some of the mechanisms of the bone metastatic processes in prostate and breast cancer.


Asunto(s)
Neoplasias Óseas/secundario , Huesos/patología , Ingeniería de Tejidos/métodos , Adenocarcinoma , Animales , Proteína Morfogenética Ósea 7/farmacología , Neoplasias Óseas/patología , Huesos/efectos de los fármacos , Neoplasias de la Mama/patología , Modelos Animales de Enfermedad , Electricidad , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Ratones , Neoplasias de la Próstata/patología , Ingeniería de Tejidos/instrumentación
5.
Nat Protoc ; 11(4): 727-46, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26985572

RESUMEN

Progress in advancing a system-level understanding of the complexity of human tissue development and regeneration is hampered by a lack of biological model systems that recapitulate key aspects of these processes in a physiological context. Hence, growing demand by cell biologists for organ-specific extracellular mimics has led to the development of a plethora of 3D cell culture assays based on natural and synthetic matrices. We developed a physiological microenvironment of semisynthetic origin, called gelatin methacryloyl (GelMA)-based hydrogels, which combine the biocompatibility of natural matrices with the reproducibility, stability and modularity of synthetic biomaterials. We describe here a step-by-step protocol for the preparation of the GelMA polymer, which takes 1-2 weeks to complete, and which can be used to prepare hydrogel-based 3D cell culture models for cancer and stem cell research, as well as for tissue engineering applications. We also describe quality control and validation procedures, including how to assess the degree of GelMA functionalization and mechanical properties, to ensure reproducibility in experimental and animal studies.


Asunto(s)
Biopolímeros , Gelatina , Hidrogeles/química , Metacrilatos , Técnicas de Cultivo de Tejidos/métodos , Andamios del Tejido/química , Animales , Humanos , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...