Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Semin Oncol ; 44(3): 198-203, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29248131

RESUMEN

Glucose is a key metabolite used by cancer cells to generate ATP, maintain redox state and create biomass. Glucose can be catabolized to lactate in the cytoplasm, which is termed glycolysis, or alternatively can be catabolized to carbon dioxide and water in the mitochondria via oxidative phosphorylation. Metabolic heterogeneity exists in a subset of human tumors, with some cells maintaining a glycolytic phenotype while others predominantly utilize oxidative phosphorylation. Cells within tumors interact metabolically with transfer of catabolites from supporting stromal cells to adjacent cancer cells. The Reverse Warburg Effect describes when glycolysis in the cancer-associated stroma metabolically supports adjacent cancer cells. This catabolite transfer, which induces stromal-cancer metabolic coupling, allows cancer cells to generate ATP, increase proliferation, and reduce cell death. Catabolites implicated in metabolic coupling include the monocarboxylates lactate, pyruvate, and ketone bodies. Monocarboxylate transporters (MCT) are critically necessary for release and uptake of these catabolites. MCT4 is involved in the release of monocarboxylates from cells, is regulated by catabolic transcription factors such as hypoxia inducible factor 1 alpha (HIF1A) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and is highly expressed in cancer-associated fibroblasts. Conversely, MCT1 is predominantly involved in the uptake of these catabolites and is highly expressed in a subgroup of cancer cells. MYC and TIGAR, which are genes involved in cellular proliferation and anabolism, are inducers of MCT1. Profiling human tumors on the basis of an altered redox balance and intra-tumoral metabolic interactions may have important biomarker and therapeutic implications. Alterations in the redox state and mitochondrial function of cells can induce metabolic coupling. Hence, there is interest in redox and metabolic modulators as anticancer agents. Also, markers of metabolic coupling have been associated with poor outcomes in numerous human malignancies and may be useful prognostic and predictive biomarkers.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glucosa/metabolismo , Neoplasias/metabolismo , Antineoplásicos , Proteínas Reguladoras de la Apoptosis , Proliferación Celular , Descubrimiento de Drogas , Fibroblastos/metabolismo , Glucólisis , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cuerpos Cetónicos/metabolismo , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , FN-kappa B/metabolismo , Neoplasias/tratamiento farmacológico , Monoéster Fosfórico Hidrolasas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ácido Pirúvico/metabolismo , Células del Estroma/metabolismo , Simportadores/metabolismo
2.
Semin Oncol ; 44(3): 226-232, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-29248134

RESUMEN

BACKGROUND: High oxidative stress as defined by hydroxyl and peroxyl activity is often found in the stroma of human breast cancers. Oxidative stress induces stromal catabolism, which promotes cancer aggressiveness. Stromal cells exposed to oxidative stress release catabolites such as lactate, which are up-taken by cancer cells to support mitochondrial oxidative phosphorylation. The transfer of catabolites between stromal and cancer cells leads to metabolic heterogeneity between these cells and increased cancer cell proliferation and reduced apoptosis in preclinical models. N-Acetylcysteine (NAC) is an antioxidant that reduces oxidative stress and reverses stromal catabolism and stromal-carcinoma cell metabolic heterogeneity, resulting in reduced proliferation and increased apoptosis of cancer cells in experimental models of breast cancer. The purpose of this clinical trial was to determine if NAC could reduce markers of stromal-cancer metabolic heterogeneity and markers of cancer cell aggressiveness in human breast cancer. METHODS: Subjects with newly diagnosed stage 0 and I breast cancer who were not going to receive neoadjuvant therapy prior to surgical resection were treated with NAC before definitive surgery to assess intra-tumoral metabolic markers. NAC was administered once a week intravenously at a dose of 150 mg/kg and 600 mg twice daily orally on the days not receiving intravenous NAC. Histochemistry for the stromal metabolic markers monocarboxylate transporter 4 (MCT4) and caveolin-1 (CAV1) and the Ki67 proliferation assay and TUNEL apoptosis assay in carcinoma cells were performed in pre- and post-NAC specimens. RESULTS: The range of days on NAC was 14-27 and the mean was 19 days. Post-treatment biopsies showed significant decrease in stromal MCT4 and reduced Ki67 in carcinoma cells. NAC did not significantly change stromal CAV1 and carcinoma TUNEL staining. NAC was well tolerated. CONCLUSIONS: NAC as a single agent reduces MCT4 stromal expression, which is a marker of glycolysis in breast cancer with reduced carcinoma cell proliferation. This study suggests that modulating metabolism in the tumor microenvironment has the potential to impact breast cancer proliferation.


Asunto(s)
Acetilcisteína/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carcinoma Ductal de Mama/tratamiento farmacológico , Carcinoma Intraductal no Infiltrante/tratamiento farmacológico , Depuradores de Radicales Libres/uso terapéutico , Mastectomía , Adulto , Apoptosis , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinoma Ductal de Mama/metabolismo , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/metabolismo , Carcinoma Intraductal no Infiltrante/patología , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Caveolina 1/metabolismo , Proliferación Celular , Femenino , Humanos , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Terapia Neoadyuvante , Estadificación de Neoplasias , Proyectos Piloto , Células del Estroma/metabolismo , Resultado del Tratamiento , Microambiente Tumoral
3.
Laryngoscope ; 126(10): 2410-2418, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26666958

RESUMEN

OBJECTIVES/HYPOTHESIS: In many cancers, varying regions within the tumor are often phenotypically heterogeneous, including their metabolic phenotype. Further, tumor regions can be metabolically compartmentalized, with metabolites transferred between compartments. When present, this metabolic coupling can promote aggressive behavior. Tumor metabolism in papillary thyroid cancer (PTC) is poorly characterized. STUDY DESIGN: Immunohistochemical staining of tissue samples. METHODS: Papillary thyroid cancer specimens from 46 patients with (n = 19) and without advanced disease (n = 27) were compared to noncancerous thyroid tissue (NCT) and benign thyroid specimens (n = 6 follicular adenoma [FA] and n = 5 nodular goiter [NG]). Advanced disease was defined as the presence of lateral neck lymphadenopathy. Immunohistochemistry was performed for translocase of outer mitochondrial membrane 20 (TOMM20), a marker of oxidative phosphorylation, and monocarboxylate transporter 4 (MCT4), a marker of glycolysis. RESULTS: Papillary thyroid cancer and FA thyrocytes had high staining for TOMM20 compared to NCT and nodular goiter (NG) (P < 0.01). High MCT4 staining in fibroblasts was more common in PTC with advanced disease than in any other tissue type studied (P < 0.01). High MCT4 staining was found in all 19 cases of PTC with advanced disease, in 11 of 19 samples with low-stage disease, in one of five samples of FA, in one of 34 NCT, and in 0 of six NG samples. Low fibroblast MCT4 staining in PTC correlated with the absence of clinical adenopathy (P = 0.028); the absence of extrathyroidal extension (P = 0.004); low American Thyroid Association risk (P = 0.001); low AGES (age, grade, extent, size) score (P = 0.004); and low age, metastasis, extent of disease, size risk (P = 0.002). CONCLUSION: This study suggests that multiple metabolic compartments exist in PTC, and low fibroblast MCT4 may be a biomarker of indolent disease. LEVEL OF EVIDENCE: N/A. Laryngoscope, 126:2410-2418, 2016.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Fibroblastos Asociados al Cáncer/fisiología , Carcinoma/metabolismo , Compartimento Celular/fisiología , Neoplasias de la Tiroides/metabolismo , Adenoma/metabolismo , Adulto , Anciano , Carcinoma Papilar , Estudios de Casos y Controles , Femenino , Bocio Nodular/metabolismo , Humanos , Inmunohistoquímica , Masculino , Proteínas de Transporte de Membrana/análisis , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Transportadores de Ácidos Monocarboxílicos/análisis , Proteínas Musculares/análisis , Receptores de Superficie Celular/análisis , Cáncer Papilar Tiroideo , Adulto Joven
4.
Semin Oncol ; 42(6): 909-14, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26615135

RESUMEN

A patient diagnosed with metastatic melanoma developed the paraneoplastic syndrome of humoral hypercalcemia of malignancy and cachexia after receiving ipilumumab. The cause of the hypercalcemia was thought to be secondary to parathyroid hormone-related peptide (PTHrP) as plasma levels were found to be elevated. The patient underwent two tumor biopsies: at diagnosis (when calcium levels were normal) and upon development of hypercalcemia and cachexia. PTHrP expression was higher in melanoma cells when hypercalcemia had occurred than prior to its onset. Metabolic characterization of melanoma cells revealed that, with development of hypercalcemia, there was high expression of monocarboxylate transporter 1 (MCT1), which is the main importer of lactate and ketone bodies into cells. MCT1 is associated with high mitochondrial metabolism. Beta-galactosidase (ß-GAL), a marker of senescence, had reduced expression in melanoma cells upon development of hypercalcemia compared to pre-hypercalcemia. In conclusion, PTHrP expression in melanoma is associated with cachexia, increased cancer cell lactate and ketone body import, high mitochondrial metabolism, and reduced senescence. Further studies are required to determine if PTHrP regulates cachexia, lactate and ketone body import, mitochondrial metabolism, and senescence in cancer cells.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Hipercalcemia/metabolismo , Melanoma/tratamiento farmacológico , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Anticuerpos Monoclonales/efectos adversos , Caquexia/inducido químicamente , Femenino , Humanos , Hipercalcemia/inducido químicamente , Ipilimumab , Melanoma/patología , Persona de Mediana Edad , Transportadores de Ácidos Monocarboxílicos/metabolismo , Síndromes Paraneoplásicos/inducido químicamente , Simportadores/metabolismo
5.
Semin Oncol ; 42(6): 915-22, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26615136

RESUMEN

Anaplastic thyroid cancer (ATC) is one of the most aggressive human cancers. Key signal transduction pathways that regulate mitochondrial metabolism are frequently altered in ATC. Our goal was to determine the mitochondrial metabolic phenotype of ATC by studying markers of mitochondrial metabolism, specifically monocarboxylate transporter 1 (MCT1) and translocase of the outer mitochondrial membrane member 20 (TOMM20). Staining patterns of MCT1 and TOMM20 in 35 human thyroid samples (15 ATC, 12 papillary thyroid cancer [PTC], and eight non-cancerous thyroid) and nine ATC mouse orthotopic xenografts were assessed by visual and Aperio digital scoring. Staining patterns of areas involved with cancer versus areas with no evidence of cancer were evaluated independently where available. MCT1 is highly expressed in human anaplastic thyroid cancer when compared to both non-cancerous thyroid tissues and papillary thyroid cancers (P<.001 for both). TOMM20 is also highly expressed in both ATC and PTC compared to non-cancerous thyroid tissue (P<.01 for both). High MCT1 and TOMM20 expression is also found in ATC mouse xenograft tumors compared to non-cancerous thyroid tissue (P<.001). These xenograft tumors have high (13)C- pyruvate uptake. ATC has metabolic features that distinguish it from PTC and non-cancerous thyroid tissue, including high expression of MCT1 and TOMM20. PTC has low expression of MCT1 and non-cancerous thyroid tissue has low expression of both MCT1 and TOMM20. This work suggests that MCT1 blockade may specifically target ATC cells presenting an opportunity for a new drug target.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Receptores de Superficie Celular/metabolismo , Simportadores/metabolismo , Carcinoma Anaplásico de Tiroides/metabolismo , Neoplasias de la Tiroides/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Carcinoma/metabolismo , Carcinoma Papilar , Femenino , Humanos , Masculino , Ratones Desnudos , Persona de Mediana Edad , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Análisis de Supervivencia , Cáncer Papilar Tiroideo , Carcinoma Anaplásico de Tiroides/mortalidad , Carcinoma Anaplásico de Tiroides/cirugía , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/cirugía , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA