RESUMEN
INTRODUCTION: Metabolic syndrome (MetS) is a disorder that is closely associated with risk factors that increase the chance of atherosclerosis and cardiovascular diseases. We demonstrate the presence of inflammation and oxidative stress in patients with MetS through levels of antioxidants and oxidative and inflammatory markers, in order to determine influential variables in therapy. METHODS: In this study, lipid peroxidation, carbonylated protein content and enzymatic and non-enzymatic antioxidants were evaluated in samples obtained from 30 patients with MetS and 30 control patients. In addition, acetylcholinesterase (AChE) activity, C-reactive protein (CRP) and uric acid (UA) levels were determined to investigate the inflammatory process in patients with MetS. RESULTS: Our results demonstrated an increase in the levels of oxidative markers, such as substances reactive to thiobarbituric acid (TBARS) and carbonyl protein. In addition, a decrease in the defense of non-enzymatic antioxidants, such as levels of vitamin C and glutathione (GSH) in patients with MetS. As for inflammatory markers, CRP and UA were increased in patients with MetS. Finally, activation of the cholinergic anti-inflammatory pathway was observed due to decreased AchE activity in patients with MetS. CONCLUSION: The analyzes indicated oxidative stress, together with a reduction in the levels of antioxidant enzymes, corroborating the high consumption of these proteins. In addition, inflammation and activation of the cholinergic anti-inflammatory pathway was observed by the AChE analysis. Thus, the activation of this pathway can be studied as a possible route to a potential therapy. In addition, the markers AChE, CRP and UA may be used as a focus for the treatment of MetS.
Asunto(s)
Acetilcolinesterasa/metabolismo , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Glutatión/metabolismo , Mediadores de Inflamación/metabolismo , Síndrome Metabólico/patología , Estrés Oxidativo , Adulto , Anciano , Proteína C-Reactiva/metabolismo , Femenino , Estudios de Seguimiento , Humanos , Peroxidación de Lípido , Masculino , Síndrome Metabólico/inmunología , Síndrome Metabólico/metabolismo , Persona de Mediana Edad , Selección de Paciente , Pronóstico , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Ácido Úrico/metabolismoRESUMEN
Thyroid hormones have an influence on the functioning of the central nervous system. Furthermore, the cholinergic and purinergic systems also are extensively involved in brain function. In this context, quercetin is a polyphenol with antioxidant and neuroprotective properties. This study investigated the effects of (MMI)-induced hypothyroidism on the NTPDase, 5'-nucleotidase, adenosine deaminase (ADA), and acetylcholinesterase (AChE) activities in synaptosomes of rats and whether the quercetin can prevent it. MMI at a concentration of 20 mg/100 mL was administered for 90 days in the drinking water. The animals were divided into six groups: control/water (CT/W), control/quercetin 10 mg/kg, control/quercetin 25 mg/kg, methimazole/water (MMI/W), methimazole/quercetin 10 mg/kg (MMI/Q10), and methimazole/quercetin 25 mg/kg (MMI/Q25). On the 30th day, hormonal dosing was performed to confirm hypothyroidism, and the animals were subsequently treated with 10 or 25 mg/kg quercetin for 60 days. NTPDase activity was not altered in the MMI/W group. However, treatment with quercetin decreased ATP and ADP hydrolysis in the MMI/Q10 and MMI/Q25 groups. 5'-nucleotidase activity increased in the MMI/W group, but treatments with 10 or 25 mg/kg quercetin decreased 5'-nucleotidase activity. ADA activity decreased in the CT/25 and MMI/Q25 groups. Furthermore, AChE activity was reduced in all groups with hypothyroidism. In vitro tests also demonstrated that quercetin per se decreased NTPDase, 5'-nucleotidase, and AChE activities. This study demonstrated changes in the 5'-nucleotidase and AChE activities indicating that purinergic and cholinergic neurotransmission are altered in this condition. In addition, quercetin can alter these parameters and may be a promising natural compound with important neuroprotective actions in hypothyroidism.
Asunto(s)
5'-Nucleotidasa/metabolismo , Acetilcolinesterasa/metabolismo , Hipotiroidismo/enzimología , Nucleósido-Trifosfatasa/metabolismo , Quercetina/uso terapéutico , Sinaptosomas/enzimología , Animales , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Hipotiroidismo/tratamiento farmacológico , Masculino , Polifenoles/farmacología , Polifenoles/uso terapéutico , Quercetina/farmacología , Ratas , Ratas Wistar , Sinaptosomas/efectos de los fármacosRESUMEN
BACKGROUND: Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. METHODS: We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. RESULTS: An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. CONCLUSIONS: An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ejercicio Físico/fisiología , Síndrome Metabólico/metabolismo , Agregación Plaquetaria , Adenina/metabolismo , Adenosina Desaminasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/metabolismo , Anciano , Femenino , Humanos , Hidrólisis , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/enzimología , Persona de Mediana EdadRESUMEN
PURPOSE: Down syndrome (DS) is caused by the triplication of chromosome 21. Studies have demonstrated platelets abnormalities and oxidative stress in DS subjects. The enzymes NTPDase, 5'-nucleotidase and adenosine deaminase (ADA) represent an important therapeutic target since they interfere in the extracellular nucleotide pool altering platelet functions. In this study, we evaluated the ectonucleotidases activities and oxidative stress parameters in samples of DS and healthy individuals. METHODS AND RESULTS: The population consisted of 28 subjects with DS and 28 healthy subjects as a control group. Blood was obtained from each subject and used for platelet and serum preparation. NTPDase activity using ATP as substrate was increased in platelets of DS patients in relation to the control group; however, no alterations were observed in the ADP hydrolysis. A decrease in the 5'-nucleotidase activity and an increase in the ADA activity was observed in platelet of DS subjects when compared to healthy individuals (P<0.05). The lipid peroxidation and total thiol content was decreased in serum of DS individuals. Furthermore, superoxide dismutase and catalase activities were increased in whole blood of this group (P<0.05). CONCLUSION: Alterations in the ectonucleotidase activities in platelets as well as changes in the oxidative stress parameters may contribute to the clinical features of DS.
Asunto(s)
Adenosina Trifosfatasas/metabolismo , Plaquetas/patología , Síndrome de Down/fisiopatología , Estrés Oxidativo , Adenosina Desaminasa/metabolismo , Adenosina Trifosfato/metabolismo , Adolescente , Adulto , Biomarcadores/metabolismo , Estudios de Casos y Controles , Síndrome de Down/sangre , Femenino , Humanos , Hidrólisis , Peroxidación de Lípido/fisiología , Masculino , Superóxido Dismutasa/metabolismo , Adulto JovenRESUMEN
BACKGROUND AND METHOD: Hypertension is accompanied by inflammatory process and purinergic system has been recognized as having an important role in modulating immune functions. Physical training is being considered one of the major lifestyle changes that contributes to the cardiovascular health as well as has an important role in regulating purinergic system. Thus, the aim of this study was to investigate the effect of chronic swimming training on lymphocytic purinergic system enzymes activities related to inflammatory process, as well as in lipid profile and classic inflammatory markers in rats that developed hypertension in response to the oral administration of N-nitro-L-arginine methyl ester hydrochloride (L-NAME). RESULTS: After 6 weeks of training, lymphocytes and serum were separated to be analysed. L-NAME-treated group displayed an increase in SBP as well as in ecto-NTPDase and adenosine deaminase (ADA) activities (Pâ<â0.05). Six weeks of swimming training were able to prevent these alterations and keep the blood pressure and enzymes activities in the same levels of control group. Exercise per se was associated with a decrease in the expression of ecto-NTPDase1 in lymphocytes (-23.4%). Exercise was also efficient in preventing the rise in classic inflammatory markers observed in L-NAME group. CONCLUSION: These findings highlight the link between purinergic signalling and inflammatory process and suggest a novel mechanism in which moderate aerobic exercise possesses the potential to attenuate inflammation caused by hypertension.
Asunto(s)
Adenosina Desaminasa/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Hipertensión/terapia , Linfocitos/enzimología , Condicionamiento Físico Animal , Animales , Presión Sanguínea , Hipertensión/inducido químicamente , Hipertensión/inmunología , Masculino , NG-Nitroarginina Metil Éster , Distribución Aleatoria , Ratas , Ratas Wistar , Natación/fisiologíaRESUMEN
BACKGROUND: Cholinergic enzyme activities are altered in hypertension, reflecting a low-grade inflammation. Regular physical exercise exerts anti-inflammatory effects and has been described as a coadjutant in the treatment of hypertension. In this study, we investigated the effect of 6 weeks of swimming training on cholinergic enzyme activities (acetylcholinesterase and butyrylcholinesterase) in Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats. METHODS: The rats were divided into 4 groups: control (n = 10), exercise (n = 10), L-NAME (n = 10), and exercise L-NAME (n = 10). The animals were trained 5 times per week in an adapted swimming system for 60 minutes with a gradual increase of the workload up to 5% of animal's body weight. Enzyme activities were measured spectrophotometrically in lymphocytes, whole blood, and serum. RESULTS: A significant rise in acetylcholinesterase activity was observed in lymphocytes and whole blood as well as in serum butyrylcholinesterase activity in the L-NAME group when compared with the other groups (P < 0.05), and the increase in cholinesterase activities was positively correlated with the rise in blood pressure (r = 0.5721, r = 0.6121, and r = 0.5811, respectively). Swimming training was efficient in preventing these alterations in the exercise L-NAME group, which displayed values similar to those of the control group. Exercise training demonstrated a significant hypotensive effect in hypertensive rats. CONCLUSIONS: Exercise training was shown to prevent increased cholinesterase related to inflammatory processes in hypertensive rats, providing a new insight about protective exercise mechanisms to avoid hypertension-related inflammation.
Asunto(s)
Acetilcolinesterasa/sangre , Butirilcolinesterasa/sangre , Hipertensión/fisiopatología , Condicionamiento Físico Animal , Natación , Animales , Presión Sanguínea , Hipertensión/sangre , Hipertensión/inducido químicamente , Hipertensión/terapia , Inflamación/prevención & control , Linfocitos/enzimología , Masculino , NG-Nitroarginina Metil Éster , Ratas , Ratas WistarRESUMEN
The present study investigated the effects of a 6-week swimming training on blood pressure, nitric oxide (NO) levels and oxidative stress parameters such as protein and lipid oxidation, antioxidant enzyme activity and endogenous non-enzymatic antioxidant content in kidney and circulating fluids, as well as on serum biochemical parameters (cholesterol, triglycerides, urea and creatinine) from Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertension treated rats. Animals were divided into four groups (n = 10): Control, Exercise, L-NAME and Exercise L-NAME. Results showed that exercise prevented a decrease in NO levels in hypertensive rats (P < 0·05). An increase in protein and lipid oxidation observed in the L-NAME-treated group was reverted by physical training in serum from the Exercise L-NAME group (P < 0·05). A decrease in the catalase (CAT) and superoxide dismutase (SOD) activities in the L-NAME group was observed when compared with normotensive groups (P < 0·05). In kidney, exercise significantly augmented the CAT and SOD activities in the Exercise L-NAME group when compared with the L-NAME group (P < 0·05). There was a decrease in the non-protein thiols (NPSH) levels in the L-NAME-treated group when compared with the normotensive groups (P < 0·05). In the Exercise L-NAME group, there was an increase in NPSH levels when compared with the L-NAME group (P < 0·05). The elevation in serum cholesterol, triglycerides, urea and creatinine levels observed in the L-NAME group were reverted to levels close to normal by exercise in the Exercise L-NAME group (P < 0·05). Exercise training had hypotensive effect, reducing blood pressure in the Exercise L-NAME group (P < 0·05). These findings suggest that physical training could have a protector effect against oxidative damage and renal injury caused by hypertension.
Asunto(s)
Hipertensión/patología , Estrés Oxidativo , Condicionamiento Físico Animal , Animales , Ácido Ascórbico/metabolismo , Biomarcadores/metabolismo , Presión Sanguínea , Peso Corporal , Catalasa/sangre , Frecuencia Cardíaca , Hipertensión/sangre , Hipertensión/fisiopatología , Riñón/enzimología , Riñón/patología , Peroxidación de Lípido , Lípidos/sangre , Masculino , NG-Nitroarginina Metil Éster , Óxido Nítrico/metabolismo , Oxidación-Reducción , Carbonilación Proteica , Ratas , Ratas Wistar , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Natación , Sístole , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
We aimed to examine the nucleoside triphosphate diphosphohydrolases (NTPDase) in lymphocytes; adenosine deaminase (ADA) and butyrylcholinesterase (BChE) in serum; and acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT) activity in whole blood; since these enzymes are involved in inflammation responses as well as in oxidative stress conditions. We also checked the levels of total thiols (T-SH), non-protein thiols (NPSH), and thiobarbituric acid reactive substances (TBARS) in serum of patients with lung cancer. We collected blood samples from patients (n = 31) previously treated for lung cancer with chemotherapy. Patients were classified as stage IIIb and IV according to the Union for International Cancer Control (UICC). The results showed a significant increase in the hydrolysis of ATP, ADP, and adenosine in patients when compared with the control group. The activity of AChE, SOD, and CAT as well as the T-SH and NPSH levels were higher in patients group and TBARS levels were lower in patients compared with the control group. These findings demonstrated that the enzymes activity involved in the control of inflammatory and immune processes as well as the oxidative stress parameters are altered in patients with lung cancer.
Asunto(s)
Biomarcadores de Tumor/sangre , Colinesterasas/sangre , Inflamación/enzimología , Neoplasias Pulmonares/metabolismo , Estrés Oxidativo , Acetilcolinesterasa/sangre , Adenosina Desaminasa/sangre , Anciano , Antineoplásicos/uso terapéutico , Butirilcolinesterasa/sangre , Catalasa/sangre , Colinesterasas/metabolismo , Cisplatino/uso terapéutico , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Linfocitos/enzimología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nucleósido-Trifosfatasa/metabolismo , Fumar/sangre , Compuestos de Sulfhidrilo/sangre , Superóxido Dismutasa/sangre , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , GemcitabinaRESUMEN
In this study, we investigated the effect of 6 weeks of swimming training on the ecto-nucleotidase activities and platelet aggregation from rats that developed hypertension in response to oral administration of L-NAME. The rats were divided into four groups: control (n = 10), exercise (n = 10), L-NAME (n = 10), and exercise L-NAME (n = 10). The animals were trained five times per week in an adapted swimming system for 60 min with a gradual increase of the workload up to 5 % of animal's body weight. The results showed an increase in ATP, ADP, AMP, and adenosine hydrolysis, indicating an augment in NTPDase (from 35.3 ± 8.1 to 53.0 ± 15.1 nmol Pi/min/mg protein for ATP; and from 21.7 ± 7.0 to 46.4 ± 15.6 nmol Pi/min/mg protein for ADP as substrate), ecto-5'-nucleotidase (from 8.0 ± 5.7 to 28.1 ± 6.9 nmol Pi/min/mg protein), and ADA (from 0.8 ± 0.5 to 3.9 ± 0.8 U/L) activities in platelets from L-NAME-treated rats when compared to other groups (p < 0.05). A significant augment on platelet aggregation in L-NAME group was also observed. Exercise training was efficient in preventing these alterations in the exercise L-NAME group, besides showing a significant hypotensive effect. In conclusion, our results clearly indicated a protector action of moderate intensity exercise on nucleotides and nucleoside hydrolysis and on platelet aggregation, which highlights the exercise training effect to avoid hypertension complications related to ecto-nucleotidase activities.
Asunto(s)
5'-Nucleotidasa/metabolismo , Plaquetas/metabolismo , Hipertensión/sangre , Condicionamiento Físico Animal , Adenosina Desaminasa/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Hidrólisis , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Agregación Plaquetaria/efectos de los fármacos , Recuento de Plaquetas , Ratas , Ratas WistarRESUMEN
The present study investigated the effects of resveratrol (RV), a polyphenol with potent antioxidant properties, on oxidative stress parameters in liver and kidney, as well as on serum biochemical parameters of streptozotocin (STZ)-induced diabetic rats. Animals were divided into six groups (n = 8): control/saline; control/RV 10 mg/kg; control/RV 20 mg/kg; diabetic/saline; diabetic/RV10 mg/kg; diabetic/RV 20 mg/kg. After 30 days of treatment with resveratrol the animals were sacrificed and the liver, kidney and serum were used for experimental determinations. Results showed that TBARS levels were significantly increased in the diabetic/saline group and the administration of resveratrol prevented this increase in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). The activities of catalase (CAT), superoxide dismutase (SOD) and aminolevulinic acid dehydratase (δ-ALA-D) and the levels of non protein thiols (NPSH) and vitamin C presented a significant decrease in the diabetic/saline group when compared with the control/saline group (P < 0.05). The treatment with resveratrol was able to prevent these decrease improving the antioxidant defense of the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). In addition, the elevation in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and γ-glutamiltransferase (γ-GT) activities as well as in levels of urea, creatinine, cholesterol and triglycerides observed in the diabetic/saline group were reverted to levels close to normal by the administration of resveratrol in the diabetic/RV10 and diabetic/RV20 groups (P < 0.05). These findings suggest that resveratrol could have a protector effect against hepatic and renal damage induced by oxidative stress in the diabetic state, which was evidenced by the capacity of this polyphenol to modulate the antioxidant defense and to decrease the lipid peroxidation in these tissues.
Asunto(s)
Biomarcadores/metabolismo , Diabetes Mellitus Experimental , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Estilbenos/administración & dosificación , Alanina Transaminasa/sangre , Animales , Antioxidantes/administración & dosificación , Antioxidantes/uso terapéutico , Aspartato Aminotransferasas/sangre , Catalasa/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Riñón/enzimología , Peroxidación de Lípido/efectos de los fármacos , Hígado/enzimología , Masculino , Estrés Oxidativo/efectos de los fármacos , Porfobilinógeno Sintasa/metabolismo , Ratas , Ratas Wistar , Resveratrol , Estilbenos/uso terapéutico , Estreptozocina/efectos adversos , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , gamma-Glutamiltransferasa/sangreRESUMEN
Acute myocardial infarction (AMI) is a highly dynamic event, which is associated with increasing production of reactive oxygen species (ROS). The imbalance between ROS production and antioxidant defenses leads to the condition known as oxidative stress. The most widely recognized effect of increasing oxidative stress is the oxidation and damage of macromolecules, membranes, proteins, and DNA. Therefore, in this study we sought to evaluate oxidative stress and antioxidant defenses in patients with AMI. Lipid peroxidation, protein carbonyl levels, and enzymatic and nonenzymatic antioxidants were assessed in samples obtained from 40 AMI patients and 40 control patients. AMI was characterized by clinical, electrocardiographic, and laboratory criteria. The control group was divided into two groups of 20 patients: a control group with healthy patients and a risk group. Our results demonstrated an increase in substances reactive to thiobarbituric acid (TBARS) and carbonyl protein levels in the AMI and risk groups. In addition, a positive correlation was found between TBARS, carbonyl protein levels, and troponin I in AMI patients. Surprisingly, for the enzymatic antioxidant defenses, catalase and superoxide dismutase, we observed an increase in these parameters in the AMI and risk groups when compared with healthy patients. However, a decrease in nonenzymatic antioxidants such as vitamin C and vitamin E was observed in AMI patients when compared with the healthy group and the risk group. The increase in oxidative stress was probably a result of the elevation in ROS production due to the ischemic/reperfusion event that occurs in AMI, in addition to the decrease of nonenzymatic antioxidant defenses.