Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 65
1.
Acta Biomater ; 181: 98-116, 2024 Jun.
Article En | MEDLINE | ID: mdl-38697382

The emergence of antibiotic-resistant bacteria is a serious threat to public health. Antimicrobial peptides (AMP) are a powerful alternative to antibiotics due to their low propensity to induce bacterial resistance. However, cytotoxicity and short half-lives have limited their clinical translation. To overcome these problems, AMP conjugation has gained relevance in the biomaterials field. Nevertheless, few studies describe the influence of conjugation on enzymatic protection, mechanism of action and antimicrobial efficacy. This review addresses this gap by providing a detailed comparison between conjugated and soluble AMP. Additionally, commonly employed chemical reactions and factors to consider when promoting AMP conjugation are reviewed. The overall results suggested that AMP conjugated onto biomaterials are specifically protected from degradation by trypsin and/or pepsin. However, sometimes, their antimicrobial efficacy was reduced. Due to limited conformational freedom in conjugated AMP, compared to their soluble forms, they appear to act initially by creating small protuberances on bacterial membranes that may lead to the alteration of membrane potential and/or formation of holes, triggering cell death. Overall, AMP conjugation onto biomaterials is a promising strategy to fight infection, particularly associated to the use of medical devices. Nonetheless, some details need to be addressed before conjugated AMP reach clinical practice. STATEMENT OF SIGNIFICANCE: Covalent conjugation of antimicrobial peptides (AMP) has been one of the most widely used strategies by bioengineers, in an attempt to not only protect AMP from proteolytic degradation, but also to prolong their residence time at the target tissue. However, an explanation for the mode of action of conjugated AMP is still lacking. This review extensively gathers works on AMP conjugation and puts forward a mechanism of action for AMP when conjugated onto biomaterials. The implications of AMP conjugation on antimicrobial activity, cytotoxicity and resistance to proteases are all discussed. A thorough review of commonly employed chemical reactions for this conjugation is also provided. Finally, details that need to be addressed for conjugated AMP to reach clinical practice are discussed.


Antimicrobial Peptides , Bacteria , Biocompatible Materials , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Bacteria/drug effects , Humans , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry
2.
Chem Soc Rev ; 53(8): 3714-3773, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38456490

Self-assembled monolayers (SAMs) represent highly ordered molecular materials with versatile biochemical features and multidisciplinary applications. Research on SAMs has made much progress since the early begginings of Au substrates and alkanethiols, and numerous examples of peptide-displaying SAMs can be found in the literature. Peptides, presenting increasing structural complexity, stimuli-responsiveness, and biological relevance, represent versatile functional components in SAMs-based platforms. This review examines the major findings and progress made on the use of peptide building blocks displayed as part of SAMs with specific functions, such as selective cell adhesion, migration and differentiation, biomolecular binding, advanced biosensing, molecular electronics, antimicrobial, osteointegrative and antifouling surfaces, among others. Peptide selection and design, functionalisation strategies, as well as structural and functional characteristics from selected examples are discussed. Additionally, advanced fabrication methods for dynamic peptide spatiotemporal presentation are presented, as well as a number of characterisation techniques. All together, these features and approaches enable the preparation and use of increasingly complex peptide-based SAMs to mimic and study biological processes, and provide convergent platforms for high throughput screening discovery and validation of promising therapeutics and technologies.


Peptides , Surface Properties , Peptides/chemistry , Humans , Biosensing Techniques , Cell Adhesion/drug effects
3.
ACS Appl Mater Interfaces ; 16(12): 14533-14547, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38482690

Surface bioconjugation of antimicrobial peptides (AMP) onto nanoparticles (AMP-NP) is a complex, multistep, and time-consuming task. Herein, a microfluidic system for the one-pot production of AMP-NP was developed. Norbornene-modified chitosan was used for NP production (NorChit-NP), and thiolated-AMP was grafted on their surface via thiol-norbornene "photoclick" chemistry over exposure of two parallel UV LEDs. The MSI-78A was the AMP selected due to its high activity against a high priority (level 2) antibiotic-resistant gastric pathogen: Helicobacter pylori (H. pylori). AMP-NP (113 ± 43 nm; zeta potential 14.3 ± 7 mV) were stable in gastric settings without a cross-linker (up to 5 days in pH 1.2) and bactericidal against two highly pathogenic H. pylori strains (1011 NP/mL with 96 µg/mL MSI-78A). Eradication was faster for H. pylori 26695 (30 min) than for H. pylori J99 (24 h), which was explained by the lower minimum bactericidal concentration of soluble MSI-78A for H. pylori 26695 (32 µg/mL) than for H. pylori J99 (128 µg/mL). AMP-NP was bactericidal by inducing H. pylori cell membrane alterations, intracellular reorganization, generation of extracellular vesicles, and leakage of cytoplasmic contents (transmission electron microscopy). Moreover, NP were not cytotoxic against two gastric cell lines (AGS and MKN74, ATCC) at bactericidal concentrations. Overall, the designed microfluidic setup is a greener, simpler, and faster approach than the conventional methods to obtain AMP-NP. This technology can be further explored for the bioconjugation of other thiolated-compounds.


Chitosan , Helicobacter pylori , Nanoparticles , Chitosan/pharmacology , Chitosan/chemistry , Microfluidics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Nanoparticles/chemistry , Norbornanes , Antimicrobial Peptides
4.
J Mater Chem B ; 11(22): 4882-4889, 2023 06 07.
Article En | MEDLINE | ID: mdl-37222145

Drug-coated balloon (DCB) is a therapeutic method that can effectively deliver antiproliferative drugs such as paclitaxel and rapamycin (RAPA) with no permanent implants left behind. However, delayed reendothelialization due to the toxicity of the delivered drugs leads to poor therapeutic effects. Here, we propose a new design of DCB coating, which incorporates both vascular endothelial growth factor (VEGF)-encoding plasmid DNA (pDNA) that can promote endothelial repair and RAPA into protamine sulfate (PrS). We demonstrate that the PrS/pDNA/RAPA coating had stability and good anticoagulation properties in vitro. We further show that the coating exhibited excellent transfer capacity from balloon substrates to vessel walls both in vitro and in vivo. Furthermore, the PrS/pDNA/RAPA coating effectively inhibited neointimal hyperplasia after balloon-induced vascular injuries through the down-regulation of the mammalian target of Rapamycin (mTOR) and promoted endothelium regeneration through increased expression of VEGF in vivo. These data indicate that our nanocomposite coating has great potential for use as a novel coating of DCB to treat neointimal hyperplasia after vascular injuries.


Vascular Endothelial Growth Factor A , Vascular System Injuries , Humans , Sirolimus/pharmacology , Hyperplasia/drug therapy , Plasmids , DNA , Vascular Endothelial Growth Factors
5.
Molecules ; 28(8)2023 Apr 13.
Article En | MEDLINE | ID: mdl-37110656

The use of human Mesenchymal Stem Cells (hMSC) as therapeutic agents for advanced clinical therapies relies on their in vitro expansion. Over the last years, several efforts have been made to optimize hMSC culture protocols, namely by mimicking the cell physiological microenvironment, which strongly relies on signals provided by the extracellular matrix (ECM). ECM glycosaminoglycans, such as heparan-sulfate, sequester adhesive proteins and soluble growth factors at the cell membrane, orchestrating signaling pathways that control cell proliferation. Surfaces exposing the synthetic polypeptide poly(L-lysine, L-leucine) (pKL) have previously been shown to bind heparin from human plasma in a selective and concentration-dependent manner. To evaluate its effect on hMSC expansion, pKL was immobilized onto self-assembled monolayers (SAMs). The pKL-SAMs were able to bind heparin, fibronectin and other serum proteins, as demonstrated by quartz crystal microbalance with dissipation (QCM-D) studies. hMSC adhesion and proliferation were significantly increased in pKL-SAMs compared to controls, most probably related to increased heparin and fibronectin binding to pKL surfaces. This proof-of-concept study highlights the potential of pKL surfaces to improve hMSC in vitro expansion possible through selective heparin/serum protein binding at the cell-material interface.


Fibronectins , Peptides , Humans , Cell Communication , Heparin/pharmacology , Heparin/chemistry , Cell Proliferation
6.
Biomater Sci ; 11(2): 499-508, 2023 Jan 17.
Article En | MEDLINE | ID: mdl-36458466

Wound infection treatment with antimicrobial peptides (AMPs) is still not a reality, due to the loss of activity in vivo. Unlike the conventional strategy of encapsulating AMPs on nanoparticles (NPs) leaving activity dependent on the release profile, this work explores AMP grafting to poly(D,L-lactide-co-glycolide)-polyethylene glycol NPs (PLGA-PEG NPs), whereby AMP exposition, infection targeting and immediate action are promoted. NPs are functionalized with MSI-78(4-20), an equipotent and more selective derivative of MSI-78, grafted through a thiol-maleimide (Mal) Michael addition. NPs with different ratios of PLGA-PEG/PLGA-PEG-Mal are produced and characterized, with 40%PLGA-PEG-Mal presenting the best colloidal properties and higher amounts of AMP grafted as shown by surface charge (+8.6 ± 1.8 mV) and AMP quantification (326 µg mL-1, corresponding to 16.3 µg of AMP per mg of polymer). NPs maintain the activity of the free AMP with a minimal inhibitory concentration (MIC) of 8-16 µg mL-1 against Pseudomonas aeruginosa, and 16-32 µg mL-1 against Staphylococcus aureus. Moreover, AMP grafting accelerates killing kinetics, from 1-2 h to 15 min for P. aeruginosa and from 6-8 h to 0.5-1 h for S. aureus. NP activity in a simulated wound fluid is maintained for S. aureus and decreases slightly for P. aeruginosa. Furthermore, NPs do not demonstrate signs of cytotoxicity at MIC concentrations. Overall, this promising formulation helps unleash the full potential of AMPs for the management of wound infections.


Antimicrobial Peptides , Nanoparticles , Staphylococcus aureus , Polymers/chemistry , Polyethylene Glycols/chemistry , Nanoparticles/chemistry , Particle Size , Drug Carriers/chemistry
7.
ACS Appl Bio Mater ; 5(12): 5877-5886, 2022 12 19.
Article En | MEDLINE | ID: mdl-36417663

Label-free detection of pathogens is of major concern to the microbiologist community. Most procedures require several steps and amplification techniques. Carbohydrates are well-established receptors for host-pathogen interactions, which can be amplified using glycodendritic architectures on the basis of multivalent binding interactions. Given that uropathogenic Escherichia coli bacterial FimH is based on such mannopyranoside-binding interactions, we demonstrate herein that synthetic monomeric and trimeric thiolated α-d-mannosides can be effectively bound to gold substrate-functionalized self-assembled monolayers (SAMs) preactivated with maleimide functionalities. Mannosides grafted onto SAMs were followed using Quartz Crystal Microbalance with Dissipation (QCM-D). Binding recognition efficiency was first evaluated using the plant lectin from Canavalia ensiformis (ConA) also using QCM-D. We showed a direct correlation between the amount of mannoside bound and the lectin attachment. Even though there was less trimer bound (nM/cm2) to the surface, we observed a 7-fold higher amount of lectin anchoring, thus further demonstrating the value of the multivalent interactions. We next examined the relative fimbriated E. coli selective adhesion/capture to either the monomeric or the trimeric mannoside bound to the surface. Our results established the successful engineering of the surfaces to show E. coli adhesion via specific mannopyranoside binding but unexpectedly, the monomeric derivative was more efficient than the trimeric analog, which could be explained by steric hindrance. This approach strongly suggests that it could be broadly applicable to other Gram-negative bacteria sharing analogous carbohydrate-dependent binding interactions.


Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/metabolism , Mannose/metabolism , Mannosides/chemistry , Concanavalin A , Lectins
8.
Pharmaceutics ; 14(11)2022 Oct 26.
Article En | MEDLINE | ID: mdl-36365113

Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.

9.
Microbiol Spectr ; 10(4): e0229121, 2022 08 31.
Article En | MEDLINE | ID: mdl-35950860

Following our previous reports on dual-action antibacterial and collagenesis-inducing hybrid peptide constructs based on "pentapeptide-4" (PP4, with amino acid sequence KTTKS), whose N-palmitoyl derivative is the well-known cosmeceutical ingredient Matrixyl, herein we disclose novel ionic liquid/PP4 conjugates (IL-KTTKS). These conjugates present potent activity against either antibiotic-susceptible strains or multidrug resistant clinical isolates of both Gram-positive and Gram-negative bacterial species belonging to the so-called "ESKAPE" group of pathogens. Noteworthy, their antibacterial activity is preserved in simulated wound fluid, which anticipates an effective action in the setting of a real wound bed. Moreover, their collagenesis-inducing effects in vitro are comparable to or stronger than those of Matrixyl. Altogether, IL-KTTKS exert a triple antibacterial, antifungal, and collagenesis-inducing action in vitro. These findings provide solid grounds for us to advance IL-KTTKS conjugates as promising leads for future development of topical treatments for complicated skin and soft tissue infections (cSSTI). Further studies are envisaged to incorporate IL-conjugates into suitable nanoformulations, to reduce toxicity and/or improve resistance to proteolytic degradation. IMPORTANCE As life expectancy increases, diseases causing chronic wound infections become more prevalent. Diabetes, peripheral vascular diseases, and bedridden patients are often associated with non-healing wounds that become infected, resulting in high morbidity and mortality. This is exacerbated by the fact that microbes are becoming increasingly resistant to antibiotics, so efforts must converge toward finding efficient therapeutic alternatives. Recently, our team identified a new type of constructs that combine (i) peptides used in cosmetics to promote collagen formation with (ii) imidazolium-based ionic liquids, which have antimicrobial and skin penetration properties. These constructs have potent wide-spectrum antimicrobial action, including against multidrug-resistant Gram-positive and Gram-negative bacteria, and fungi. Moreover, they can boost collagen formation. Hence, this is an unprecedented class of lead molecules toward development of a new topical medicine for chronically infected wounds.


Anti-Infective Agents , Cosmeceuticals , Ionic Liquids , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Collagen/pharmacology , Cosmeceuticals/pharmacology , Gram-Negative Bacteria , Gram-Positive Bacteria , Humans , Ionic Liquids/chemistry , Ionic Liquids/pharmacology , Microbial Sensitivity Tests , Peptides/chemistry , Peptides/pharmacology
10.
Biomaterials ; 286: 121579, 2022 07.
Article En | MEDLINE | ID: mdl-35605343

The development of antibiotics resistance has made multidrug-resistant (MDR) bacterial infection one of the most serious global health issues. Photothermal therapy (PTT) is an emerging therapeutic mode which can be applied to bacterial infection without inducing resistance. Moreover, enhanced therapeutic efficacy and less tissue damage can be realized with NIR-II fluorescence imaging (FLI) guided PTT. Herein, a polymeric luminogen with aggregation-induced emission (AIEgens) characteristics, poly(dithieno[3,2-b:2',3'-d]pyrrole-benzo[1,2-c:4,5-c']bis([1,2,5]thiadiazole)) (PDTPTBT), was synthesized and used as a photothermal agent for PTT of bacterial infections. PDTPTBT was encapsulated into liposomes (L-PDTPTBT) for improved water dispersibility. Upon 808 nm NIR irradiation, L-PDTPTBT can eliminate multiple bacteria including the Gram-positive methicillin-resistant Staphylococcus aureus and Enterococcus faecalis, the Gram-negative Escherichia coli and Pseudomonas aeruginosa. Serious damage of bacterial membrane and leakage of cytoplasm is observed after photothermal treatment using L-PDTPTBT. The potential of the formulation has been demonstrated in two infected animal models: (i) a subcutaneous abscess model and (ii) a diabetic skin infection model. In the diabetic skin infection model, the death of mice is largely suppressed and the wounds can heal more quickly with treatment of L-PDTPTBT under NIR irradiation. The excellent photothermal bactericidal ability and low cytotoxicity make L-PDTPTBT potential candidate for treating MDR bacterial infections in the future.


Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Bacterial Infections/therapy , Mice , Phototherapy/methods , Polymers
11.
J Mater Chem B ; 10(14): 2384-2429, 2022 04 06.
Article En | MEDLINE | ID: mdl-35244122

The multifunctional properties of antimicrobial peptides (AMPs) make them attractive candidates for the treatment of various diseases. AMPs are considered as alternatives to antibiotics due to the increasing number of multidrug-resistant (MDR) bacteria. However, bare AMPs have limited therapeutic potentials due to a low residence time in the blood circulatory system and susceptibility to proteases and an alkaline wound environment. These limitations are the major hurdles for AMPs to succeed as commercial drugs. In contrast, AMP-based materials, for instance, NPs, hydrogels, electrospun fibres, dressings and implants, could overcome these challenges and provide therapeutic efficacies to the conjugated AMPs superior to those of bare AMPs in different disease models. In this review, we discuss the preparation of different compositions of AMP-based materials and their therapeutic potential for the treatment of microbial infections in the brain, eyes, mouth, skin, lungs, and gastrointestinal and urinary tracts. Apart from antimicrobial potential, the applications of AMP-based materials in the regeneration of skin/bone, prevention of implant-associated infections, detection/imaging of bacteria, cancer therapy and gene delivery are discussed in this review. Lastly, we discuss different challenges that hinder the commercialization of AMP-based materials. Overall, this review provides a comprehensive account of the current progress and prospects of AMP-based materials for clinical applications.


Anti-Infective Agents , Antimicrobial Peptides , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Bacteria , Drug Resistance, Multiple, Bacterial
13.
Acta Biomater ; 137: 186-198, 2022 01 01.
Article En | MEDLINE | ID: mdl-34634508

MSI-78A (Pexiganan A) is one of the few antimicrobial peptides (AMPs) able to kill Helicobacter pylori, a pathogenic bacterium that colonizes the gastric mucosa of half of the world's population. Antibiotics fail in 20-40% of H. pylori-infected patients, reinforcing the need for alternative treatments. Herein, a bioengineered approach was developed. MSI-78A with a C-terminal cysteine was grafted onto chitosan microspheres (AMP-ChMic) by thiol-maleimide (Michael-addition) chemistry using a long heterobifunctional spacer (NHS-PEG113-MAL). Microspheres with ∼4 µm diameter (near H. pylori length) and stable at low pH were produced by spray drying using a chitosan solution with an incomplete genipin crosslinking. A 3 × 10-5 µg AMP/microsphere grafting was estimated/confirmed by UV/Vis and FTIR spectroscopies. AMP-ChMic were bactericidal against H. pylori J99 (highly pathogenic human strain) at lower concentrations than the free peptide (∼277 µg grafted MSI-78A-SH/mL vs 512 µg free MSI-78A-SH/mL), even after pre-incubation in simulated gastric conditions with pepsin. AMP-ChMic killed H. pylori by membrane destabilization and cytoplasm release in a ratio of ∼10 bacteria/microsphere. This can be attributed to H. pylori attraction to chitosan, facilitating the interaction of grafted AMP with bacterium membrane. Overall, it was demonstrated that the peptide-microsphere conjugation chemistry did not compromise the MSI-78A antimicrobial activity, instead it boosted its bactericidal performance against H. pylori. STATEMENT OF SIGNIFICANCE: Half of the world's population is infected with Helicobacter pylori, a gastric bacterium that is responsible for 90% of non-cardia gastric cancers. Therefore, H. pylori eradication is now advocated in all infected individuals. However, available antibiotic therapies fail in up to 40% patients. Antimicrobial peptides (AMPs) are appealing alternatives to antibiotics, but their high susceptibility in vivo limits their clinical translation. AMP immobilization onto biomaterials surface will overcome this problem. Herein, we demonstrate that immobilization of MSI-78A (one of the few AMPs with activity against H. pylori) onto chitosan microspheres (AMP-ChMic) enhances its anti-H. pylori activity even at acidic pH (gastric settings). These results highlight the strong potential of AMP-ChMic as an antibiotic alternative for H. pylori eradication.


Anti-Bacterial Agents , Antimicrobial Peptides/pharmacology , Chitosan , Helicobacter pylori , Anti-Bacterial Agents/pharmacology , Chitosan/pharmacology , Helicobacter Infections , Helicobacter pylori/drug effects , Humans , Microspheres
14.
ACS Appl Mater Interfaces ; 13(36): 42329-42343, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-34464076

Bacterial biofilms are a major health concern, mainly due to their contribution to increased bacterial resistance to well-known antibiotics. The conventional treatment of biofilms represents a challenge, and frequently, eradication is not achieved with long-lasting administration of antibiotics. In this context, the present work proposes an innovative therapeutic approach that is focused on the encapsulation of N-acetyl-l-cysteine (NAC) into lipid nanoparticles (LNPs) functionalized with d-amino acids to target and disrupt bacterial biofilms. The optimized formulations presented a mean hydrodynamic diameter around 200 nm, a low polydispersity index, and a high loading capacity. These formulations were stable under storage conditions up to 6 months. In vitro biocompatibility studies showed a low cytotoxicity effect in fibroblasts and a low hemolytic activity in human red blood cells. Nevertheless, unloaded LNPs showed a higher hemolytic potential than NAC-loaded LNPs, which suggests a safer profile of the latter. The in vitro antibiofilm efficacy of the developed formulations was tested against Staphylococcus epidermidis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) mature biofilms. The results showed that the NAC-loaded LNPs were ineffective against S. epidermidis biofilms, while a significant reduction of biofilm biomass and bacterial viability in P. aeruginosa biofilms were observed. In a more complex therapeutic approach, the LNPs were further combined with moxifloxacin, revealing a beneficial effect between the LNPs and the antibiotic against P. aeruginosa biofilms. Both alone and in combination with moxifloxacin, unloaded and NAC-loaded LNPs functionalized with d-amino acids showed a great potential to reduce bacterial viability, with no significant differences in the presence or absence of NAC. However, the presence of NAC in NAC-loaded functionalized LNPs shows a safer profile than the unloaded LNPs, which is beneficial for an in vivo application. Overall, the developed formulations present a potential therapeutic approach against P. aeruginosa biofilms, alone or in combination with antibiotics.


Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Carriers/pharmacology , Liposomes/chemistry , Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Acetylcysteine/chemistry , Acetylcysteine/toxicity , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cell Line , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Synergism , Humans , Liposomes/toxicity , Mice , Microbial Sensitivity Tests , Moxifloxacin/pharmacology , Nanoparticles/toxicity , Palmitates/chemistry , Palmitates/toxicity , Phosphatidylethanolamines/chemistry , Phosphatidylethanolamines/toxicity , Polyethylene Glycols/chemistry , Polyethylene Glycols/toxicity , Pseudomonas aeruginosa/physiology
15.
ACS Appl Mater Interfaces ; 13(28): 32662-32672, 2021 Jul 21.
Article En | MEDLINE | ID: mdl-34240610

The lack of small-diameter vascular grafts (inner diameter <5 mm) to substitute autologous grafts in arterial bypass surgeries has a massive impact on the prognosis and progression of cardiovascular diseases, the leading cause of death globally. Decellularized arteries from different sources have been proposed as an alternative, but their poor mechanical performance and high collagen exposure, which promotes platelet and bacteria adhesion, limit their successful application. In this study, these limitations were surpassed for decellularized umbilical cord arteries through the coating of their lumen with graphene oxide (GO). Placental and umbilical cord arteries were decellularized and perfused with a suspension of GO (C/O ratio 2:1) with ∼1.5 µm lateral size. A homogeneous GO coating that completely covered the collagen fibers was obtained for both arteries, with improvement of mechanical properties being achieved for umbilical cord decellularized arteries. GO coating increased the maximum force in 27%, the burst pressure in 29%, the strain in 25%, and the compliance in 10%, compared to umbilical cord decellularized arteries. The achieved theoretical burst pressure (1960 mmHg) and compliance (13.9%/100 mmHg) are similar to the human saphenous vein and mammary artery, respectively, which are used nowadays as the gold standard in coronary and peripheral artery bypass surgeries. Furthermore, and very importantly, coatings with GO did not compromise the endothelial cell adhesion but decreased platelet and bacteria adhesion to decellularized arteries, which will impact on the prevention of thrombosis and infection, until full re-endothetialization is achieved. Overall, our results reveal that GO coating has an effective role in the improvement of decellularized umbilical cord artery performance, which is a huge step toward their application as a small-diameter vascular graft.


Blood Vessel Prosthesis , Coated Materials, Biocompatible/chemistry , Graphite/chemistry , Umbilical Arteries/chemistry , Bacterial Adhesion/drug effects , Blood Platelets/drug effects , Cell Adhesion/drug effects , Chorion/blood supply , Female , Human Umbilical Vein Endothelial Cells , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Placenta/blood supply , Pregnancy
16.
J Mater Chem B ; 9(17): 3705-3715, 2021 05 05.
Article En | MEDLINE | ID: mdl-33871523

Hospital-acquired infections are still a major concern worldwide, being frequently related to bacterial biofilm formation on medical devices, and thus difficult to eradicate with conventional antimicrobial treatments. Therefore, infection-preventive solutions based on natural polymers are being investigated. Recently, a marine cyanobacterium-derived polymeric coating (CyanoCoating) has demonstrated great anti-adhesive potential when immobilized onto gold model substrates. In this work, we took this technology a step closer to an industrial application by covalently immobilizing CyanoCoating onto medical grade polyurethane (PU). This immobilization was developed through the introduction of linkable moieties onto a PU inert surface using different pre-treatments. Besides the application of the polydopamine (pDA) linker layer, other processes frequently found in industrial settings, such as atmospheric plasma (using O2 or N2 as reactive gases) and ozone surface activations, were evaluated. From all the pre-treatments tested, the ozone activation was the most promising since the obtained coating not only revealed a homogeneous distribution, but also significantly reduced the adhesion of two relevant etiological bacteria in static conditions (the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli). Moreover, it also impaired E. coli biofilm formation under simulated urinary tract dynamic conditions, reinforcing the potential of CyanoCoating as an antibiotic-free alternative to mitigate medical device-associated infections, particularly in the urinary tract.


Anti-Infective Agents/chemistry , Coated Materials, Biocompatible/chemistry , Cyanobacteria/chemistry , Indoles/chemistry , Plasma Gases/chemistry , Polymers/chemistry , Polyurethanes/chemistry , Anti-Infective Agents/pharmacology , Bacterial Adhesion , Biofilms , Coated Materials, Biocompatible/metabolism , Escherichia coli/drug effects , Kinetics , Nitrogen/chemistry , Ozone/chemistry , Polyurethanes/metabolism , Staphylococcus aureus/drug effects , Surface Properties , Temperature , Time Factors
17.
Cell Surf ; 7: 100048, 2021 Dec.
Article En | MEDLINE | ID: mdl-33665520

Bacterial infections are the most eminent public health challenge of the 21st century. The primary step leading to infection is bacterial adhesion to the surface of host cells or medical devices, which is mediated by a multitude of molecular interactions. At the interface of life sciences and physics, last years advances in atomic force microscopy (AFM)-based force spectroscopy techniques have made possible to measure the forces driving bacteria-cell and bacteria-materials interactions on a single molecule/cell basis (single molecule/cell force spectroscopy). Among the bacteria-(bio)materials surface interactions, the life-threatening infections associated to medical devices involving Staphylococcus aureus and Escherichia coli are the most eminent. On the other hand, Pseudomonas aeruginosa binding to the pulmonary and urinary tract or the Helicobacter pylori binding to the gastric mucosa, are classical examples of bacteria-host cell interactions that end in serious infections. As we approach the end of the antibiotic era, acquisition of a deeper knowledge of the fundamental forces involved in bacteria - host cells/(bio)materials surface adhesion is crucial for the identification of new ligand-binding events and its assessment as novel targets for alternative anti-infective therapies. This article aims to highlight the potential of AFM-based force spectroscopy for new targeted therapies development against bacterial infections in which adhesion plays a pivotal role and does not aim to be an extensive overview on the AFM technical capabilities and theory of single molecule force spectroscopy.

18.
Acta Biomater ; 114: 206-220, 2020 09 15.
Article En | MEDLINE | ID: mdl-32622054

Persistent Helicobacter pylori (H. pylori) infection is related to 90% of gastric cancers. With bacterial resistance rising and treatment inefficiency affecting 15% of the patients, alternative treatments urge. Chitosan microspheres (ChMics) have been proposed as an H. pylori-binding system. This work evaluates ChMics biocompatibility, mucopenetration and capacity to treat H. pylori infection in mice after oral administration. ChMics of different size (XL, ∼120 µm and XS, ∼40 µm) and degree of acetylation (6% and 16%) were developed and revealed to be able to adhere both human and mouse-adapted H. pylori strains without cytotoxicity towards human gastric cells. Ex vivo studies showed that smaller (XS) microspheres penetrate further within the gastric foveolae, suggesting their ability to reach deeply adherent bacteria. In vivo assays showed 88% reduction of infection when H. pylori-infected mice (C57BL/6) were treated with more mucoadhesive XL6 and XS6 ChMics. Overall, ChMics clearly demonstrate ability to reduce H. pylori gastric infection in mice, with chitosan degree of acetylation being a dominant factor over microspheres' size on H. pylori removal efficiency. These results evidence the strong potential of this strategy as an antibiotic-free approach to fight H. pylori infection, where microspheres are orally administered, bind H. pylori in the stomach, and remove them through the gastrointestinal tract. STATEMENT OF SIGNIFICANCE: Approximately 90% of gastric cancers are caused by the carcinogenic agent Helicobacter pylori, which infects >50% of the world population. Bacterial resistance, reduced antibiotic bioavailability, and the intricate distribution of bacteria in mucus and within gastric foveolae hamper the success of most strategies to fight H. pylori. We demonstrate that an antibiotic-free therapy based on bare chitosan microspheres that bind and remove H. pylori from stomach can achieve 88% reduction of infection from H. pylori-infected mice. Changing size and mucoadhesive properties, microspheres can reach different areas of gastric mucosa: smaller and less mucoadhesive can penetrate deeper into the foveolae. This promising, simple and inexpensive strategy paves the way for a faster bench-to-bedside transition, therefore holding great potential for clinical application.


Chitosan , Helicobacter Infections , Helicobacter pylori , Animals , Chitosan/pharmacology , Gastric Mucosa , Helicobacter Infections/drug therapy , Humans , Mice , Mice, Inbred C57BL , Microspheres
19.
Mar Drugs ; 18(6)2020 May 26.
Article En | MEDLINE | ID: mdl-32466349

Catheter-associated urinary tract infections (CAUTIs) represent about 40% of all healthcare-associated infections. Herein, the authors report the further development of an infection preventive anti-adhesive coating (CyanoCoating) meant for urinary catheters, and based on a natural polymer released by a marine cyanobacterium. CyanoCoating performance was assessed against relevant CAUTI etiological agents, namely Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus (MRSA), and Candida albicans in the presence of culture medium or artificial urine, and under biofilm promoting settings. CyanoCoating displayed a broad anti-adhesive efficiency against all the uropathogens tested (68-95%), even in the presence of artificial urine (58-100%) with exception of P. mirabilis in the latter condition. Under biofilm-promoting settings, CyanoCoating reduced biofilm formation by E. coli, P. mirabilis, and C. albicans (30-60%). In addition, CyanoCoating prevented large crystals encrustation, and its sterilization with ethylene oxide did not impact the coating stability. Therefore, CyanoCoating constitutes a step forward for the implementation of antibiotic-free alternative strategies to fight CAUTIs.


Cyanobacteria , Polymers/administration & dosage , Urinary Catheters/adverse effects , Urinary Tract Infections/prevention & control , Biofilms/drug effects , Humans , Polymers/pharmacology
20.
Colloids Surf B Biointerfaces ; 189: 110836, 2020 May.
Article En | MEDLINE | ID: mdl-32066089

Human mesenchymal stem/stromal cells (hMSC) are promising therapeutic agents for regenerative medicine. However, therapeutic doses necessary for clinical application require in vitro expansion, ideally under Xeno-Free (XF) conditions to avoid the use of foetal bovine serum (FBS). We previously reported that hMSCs could be expanded using a pharmaceutical-grade human plasma-derived supplement for cell culture (SCC, Plastem®) combined with bFGF and TGFß1, on fibronectin (Fn)-coated surfaces. hMSCs expansion may also be affected by the chemistry of the culture surface, which modulates protein adsorption at the cell-material interface and, consequently, cell behavior. This work aimed to evaluate the effect of surface chemistry on hMSCs behavior in SCC-based XF media. For that, self-assembled monolayers (SAMs) with hydrophobic (-CH3) and hydrophilic (neutral -OH, positively charged -NH3+ and negatively charged -COO-) groups were used as model surfaces. Under XF conditions, Fn coating showed to be necessary to improve hMSC adhesion (4 h) onto all surfaces, except for OH-SAMs, probably due to a low protein adsorption capacity characteristic of this surface. In terms of cell metabolic activity (5 days) on Fn-coated surfaces, an increase over time under XF conditions was observed in all SAMs except in CH3-SAMs, which can be attributed to strong and irreversible protein adsorption characteristic of hydrophobic surfaces. This trend was also observed under FBS conditions. Nevertheless, none of the surfaces improved hMSC metabolic activity, as compared with tissue-cultured surfaces. Overall, this work describes the role of surface chemistry in XF hMSC expansion.


Mesenchymal Stem Cells/cytology , Adult , Cell Proliferation , Cells, Cultured , Gold/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Male , Particle Size , Surface Properties , Young Adult
...