Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Physiol Genomics ; 56(7): 483-491, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738317

RESUMEN

Hypertonic dehydration is associated with muscle wasting and synthesis of organic osmolytes. We recently showed a metabolic shift to amino acid production and urea cycle activation in coronavirus-2019 (COVID-19), consistent with the aestivation response. The aim of the present investigation was to validate the metabolic shift and development of long-term physical outcomes in the non-COVID cohort of the Biobanque Québécoise de la COVID-19 (BQC19). We included 824 patients from BQC19, where 571 patients had data of dehydration in the form of estimated osmolality (eOSM = 2Na + 2K + glucose + urea), and 284 patients had metabolome data and long-term follow-up. We correlated the degree of dehydration to mortality, invasive mechanical ventilation, acute kidney injury, and long-term symptoms. As found in the COVID cohort, higher eOSM correlated with a higher proportion of urea and glucose of total eOSM, and an enrichment of amino acids compared with other metabolites. Sex-stratified analysis indicated that women may show a weaker aestivation response. More severe dehydration was associated with mortality, invasive mechanical ventilation, and acute kidney injury during the acute illness. Importantly, more severe dehydration was associated with physical long-term symptoms but not mental long-term symptoms after adjustment for age, sex, and disease severity. Patients with water deficit in the form of increased eOSM tend to have more severe disease and experience more physical symptoms after an acute episode of care. This is associated with amino acid and urea production, indicating dehydration-induced muscle wasting.NEW & NOTEWORTHY We have previously shown that humans exhibit an aestivation-like response where dehydration leads to a metabolic shift to urea synthesis, which is associated with long-term weakness indicating muscle wasting. In the present study, we validate this response in a new cohort and present a deeper metabolomic analysis and pathway analysis. Finally, we present a sex-stratified analysis suggesting weaker aestivation in women. However, women show less dehydration, so the association warrants further study.


Asunto(s)
COVID-19 , Deshidratación , Metaboloma , Humanos , Femenino , Masculino , Persona de Mediana Edad , Deshidratación/metabolismo , COVID-19/metabolismo , COVID-19/complicaciones , Anciano , Metabolómica/métodos , Respiración Artificial , Lesión Renal Aguda/metabolismo , Adulto , SARS-CoV-2 , Estudios de Cohortes , Aminoácidos/metabolismo , Aminoácidos/sangre , Urea/metabolismo , Urea/sangre , Concentración Osmolar
2.
J Am Coll Cardiol ; 83(15): 1386-1398, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38599715

RESUMEN

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors are believed to improve cardiac outcomes due to their osmotic diuretic potential. OBJECTIVES: The goal of this study was to test the hypothesis that vasopressin-driven urine concentration overrides the osmotic diuretic effect of glucosuria induced by dapagliflozin treatment. METHODS: DAPA-Shuttle1 (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment) was a single-center, double-blind, randomized, placebo-controlled trial, in which patients with chronic heart failure NYHA functional classes I/II and reduced ejection fraction were randomly assigned to receive dapagliflozin 10 mg daily or placebo (1:1) for 4 weeks. The primary endpoint was change from baseline in urine osmolyte concentration. Secondary endpoints included changes in copeptin levels and solute free water clearance. RESULTS: Thirty-three randomized, sodium-glucose cotransporter 2 inhibitor-naïve participants completed the study, 29 of whom (placebo: n = 14; dapagliflozin: n = 15) provided accurate 24-hour urine collections (mean age 59 ± 14 years; left ventricular ejection fraction 31% ± 9%). Dapagliflozin treatment led to an isolated increase in urine glucose excretion by 3.3 mmol/kg/d (95% CI: 2.51-4.04; P < 0.0001) within 48 hours (early) which persisted after 4 weeks (late; 2.7 mmol/kg/d [95% CI: 1.98-3.51]; P < 0.0001). Dapagliflozin treatment increased serum copeptin early (5.5 pmol/L [95% CI: 0.45-10.5]; P < 0.05) and late (7.8 pmol/L [95% CI: 2.77-12.81]; P < 0.01), leading to proportional reductions in free water clearance (early: -9.1 mL/kg/d [95% CI: -14 to -4.12; P < 0.001]; late: -11.0 mL/kg/d [95% CI: -15.94 to -6.07; P < 0.0001]) and elevated urine concentrations (late: 134 mmol/L [95% CI: 39.28-229.12]; P < 0.01). Therefore, urine volume did not significantly increase with dapagliflozin (mean difference early: 2.8 mL/kg/d [95% CI: -1.97 to 7.48; P = 0.25]; mean difference late: 0.9 mL/kg/d [95% CI: -3.83 to 5.62]; P = 0.70). CONCLUSIONS: Physiological-adaptive water conservation eliminated the expected osmotic diuretic potential of dapagliflozin and thereby prevented a glucose-driven increase in urine volume of approximately 10 mL/kg/d · 75 kg = 750 mL/kg/d. (Hepato-renal Regulation of Water Conservation in Heart Failure Patients With SGLT-2 Inhibitor Treatment [DAPA-Shuttle1]; NCT04080518).


Asunto(s)
Compuestos de Bencidrilo , Conservación de los Recursos Hídricos , Diuresis , Glucósidos , Insuficiencia Cardíaca , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Anciano , Humanos , Persona de Mediana Edad , Diuréticos Osmóticos/farmacología , Diuréticos Osmóticos/uso terapéutico , Transportador 2 de Sodio-Glucosa , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Volumen Sistólico , Función Ventricular Izquierda , Agua
3.
Lupus Sci Med ; 9(1)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36414333

RESUMEN

OBJECTIVE: Patients with SLE frequently have debilitating fatigue and reduced physical activity. Intermuscular adipose tissue (IMAT) accumulation is associated with reduced physical exercise capacity. We hypothesised that IMAT is increased in patients with SLE and associated with increased fatigue, reduced physical activity and increased inflammation. METHODS: In a cross-sectional study, 23 patients with SLE and 28 control participants were evaluated. IMAT was measured in the calf muscles using sequential T 1-weighted MRI. Patient-reported physical activity and fatigue were measured and a multiplex proteomic assay was used to measure markers and mediators of inflammation. RESULTS: IMAT accumulation (percentage of IMAT area to muscle area) was significantly higher in SLE versus control participants (7.92%, 4.51%-13.39% vs 2.65%, 1.15%-4.61%, median, IQR, p<0.001) and remained significant after adjustment for age, sex, race and body mass index (p<0.001). In patients with SLE, IMAT accumulation did not differ significantly among corticosteroid users and non-users (p=0.48). In the study cohort (patients and controls), IMAT was positively correlated with self-reported fatigue score (rho=0.52, p<0.001) and inversely correlated with self-reported walking distance (rho=-0.60, p<0.001). Several markers of inflammation were associated with IMAT accumulation in patients with SLE, and gene ontology analysis showed significant enrichment for pathways associated with macrophage migration and activation in relation to IMAT. CONCLUSION: Patients with SLE have greater IMAT accumulation than controls in the calf muscles. Increased IMAT is associated with greater fatigue and lower physical activity. Future studies should evaluate the effectiveness of interventions that improve muscle quality to alleviate fatigue in patients with SLE.


Asunto(s)
Lupus Eritematoso Sistémico , Proteómica , Humanos , Estudios Transversales , Lupus Eritematoso Sistémico/complicaciones , Tejido Adiposo/diagnóstico por imagen , Tejido Adiposo/metabolismo , Fatiga/etiología , Fatiga/metabolismo , Inflamación
4.
Crit Care ; 26(1): 322, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36271419

RESUMEN

BACKGROUND: We have previously shown that iatrogenic dehydration is associated with a shift to organic osmolyte production in the general ICU population. The aim of the present investigation was to determine the validity of the physiological response to dehydration known as aestivation and its relevance for long-term disease outcome in COVID-19. METHODS: The study includes 374 COVID-19 patients from the Pronmed cohort admitted to the ICU at Uppsala University Hospital. Dehydration data was available for 165 of these patients and used for the primary analysis. Validation was performed in Biobanque Québécoise de la COVID-19 (BQC19) using 1052 patients with dehydration data. Dehydration was assessed through estimated osmolality (eOSM = 2Na + 2 K + glucose + urea), and correlated to important endpoints including death, invasive mechanical ventilation, acute kidney injury, and long COVID-19 symptom score grouped by physical or mental. RESULTS: Increasing eOSM was correlated with increasing role of organic osmolytes for eOSM, while the proportion of sodium and potassium of eOSM were inversely correlated to eOSM. Acute outcomes were associated with pronounced dehydration, and physical long-COVID was more strongly associated with dehydration than mental long-COVID after adjustment for age, sex, and disease severity. Metabolomic analysis showed enrichment of amino acids among metabolites that showed an aestivating pattern. CONCLUSIONS: Dehydration during acute COVID-19 infection causes an aestivation response that is associated with protein degradation and physical long-COVID. TRIAL REGISTRATION: The study was registered à priori (clinicaltrials.gov: NCT04316884 registered on 2020-03-13 and NCT04474249 registered on 2020-06-29).


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Deshidratación/etiología , Sodio , Urea , Potasio , Aminoácidos , Glucosa , Síndrome Post Agudo de COVID-19
5.
Acta Physiol (Oxf) ; 232(1): e13629, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33590667

RESUMEN

AIM: We have reported earlier that a high salt intake triggered an aestivation-like natriuretic-ureotelic body water conservation response that lowered muscle mass and increased blood pressure. Here, we tested the hypothesis that a similar adaptive water conservation response occurs in experimental chronic renal failure. METHODS: In four subsequent experiments in Sprague Dawley rats, we used surgical 5/6 renal mass reduction (5/6 Nx) to induce chronic renal failure. We studied solute and water excretion in 24-hour metabolic cage experiments, chronic blood pressure by radiotelemetry, chronic metabolic adjustment in liver and skeletal muscle by metabolomics and selected enzyme activity measurements, body Na+ , K+ and water by dry ashing, and acute transepidermal water loss in conjunction with skin blood flow and intra-arterial blood pressure. RESULTS: 5/6 Nx rats were polyuric, because their kidneys could not sufficiently concentrate the urine. Physiological adaptation to this renal water loss included mobilization of nitrogen and energy from muscle for organic osmolyte production, elevated norepinephrine and copeptin levels with reduced skin blood flow, which by means of compensation reduced their transepidermal water loss. This complex physiologic-metabolic adjustment across multiple organs allowed the rats to stabilize their body water content despite persisting renal water loss, albeit at the expense of hypertension and catabolic mobilization of muscle protein. CONCLUSION: Physiological adaptation to body water loss, termed aestivation, is an evolutionary conserved survival strategy and an under-studied research area in medical physiology, which besides hypertension and muscle mass loss in chronic renal failure may explain many otherwise unexplainable phenomena in medicine.


Asunto(s)
Conservación de los Recursos Hídricos , Hipertensión , Fallo Renal Crónico , Animales , Presión Sanguínea , Riñón , Masculino , Músculo Esquelético/fisiología , Ratas , Ratas Sprague-Dawley
6.
Acta Physiol (Oxf) ; 232(1): e13628, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33590724

RESUMEN

AIM: Recent evidence suggests that arterial hypertension could be alternatively explained as a physiological adaptation response to water shortage, termed aestivation, which relies on complex multi-organ metabolic adjustments to prevent dehydration. Here, we tested the hypothesis that chronic water loss across diseased skin leads to similar adaptive water conservation responses as observed in experimental renal failure or high salt diet. METHODS: We studied mice with keratinocyte-specific overexpression of IL-17A which develop severe psoriasis-like skin disease. We measured transepidermal water loss and solute and water excretion in the urine. We quantified glomerular filtration rate (GFR) by intravital microscopy, and energy and nitrogen pathways by metabolomics. We measured skin blood flow and transepidermal water loss (TEWL) in conjunction with renal resistive indices and arterial blood pressure. RESULTS: Psoriatic animals lost large amounts of water across their defective cutaneous epithelial barrier. Metabolic adaptive water conservation included mobilization of nitrogen and energy from muscle to increase organic osmolyte production, solute-driven maximal anti-diuresis at normal GFR, increased metanephrine and angiotensin 2 levels, and cutaneous vasoconstriction to limit TEWL. Heat exposure led to cutaneous vasodilation and blood pressure normalization without parallel changes in renal resistive index, albeit at the expense of further increased TEWL. CONCLUSION: Severe cutaneous water loss predisposes psoriatic mice to lethal dehydration. In response to this dehydration stress, the mice activate aestivation-like water conservation motifs to maintain their body hydration status. The circulatory water conservation response explains their arterial hypertension. The nitrogen-dependency of the metabolic water conservation response explains their catabolic muscle wasting.


Asunto(s)
Hipertensión , Pérdida Insensible de Agua , Animales , Estivación , Ratones , Músculos , Piel
7.
Nat Rev Nephrol ; 17(1): 65-77, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33005037

RESUMEN

Therapeutic inhibition of the sodium-glucose co-transporter 2 (SGLT2) leads to substantial loss of energy (in the form of glucose) and additional solutes (in the form of Na+ and its accompanying anions) in urine. However, despite the continuously elevated solute excretion, long-term osmotic diuresis does not occur in humans with SGLT2 inhibition. Rather, patients on SGLT2 inhibitor therapy adjust to the reduction in energy availability and conserve water. The metabolic adaptations that are induced by SGLT2 inhibition are similar to those observed in aestivation - an evolutionarily conserved survival strategy that enables physiological adaptation to energy and water shortage. Aestivators exploit amino acids from muscle to produce glucose and fatty acid fuels. This endogenous energy supply chain is coupled with nitrogen transfer for organic osmolyte production, which allows parallel water conservation. Moreover, this process is often accompanied by a reduction in metabolic rate. By comparing aestivation metabolism with the fuel switches that occur during therapeutic SGLT2 inhibition, we suggest that SGLT2 inhibitors induce aestivation-like metabolic patterns, which may contribute to the improvements in cardiac and renal function observed with this class of therapeutics.


Asunto(s)
Deshidratación/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estivación/fisiología , Insuficiencia Cardíaca/metabolismo , Riñón/metabolismo , Insuficiencia Renal Crónica/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Adaptación Fisiológica/fisiología , Anfibios , Animales , Diuresis/efectos de los fármacos , Diuresis/fisiología , Corazón/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Mamíferos , Miocardio/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Equilibrio Hidroelectrolítico/fisiología
8.
Obesity (Silver Spring) ; 28(7): 1292-1300, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32568462

RESUMEN

OBJECTIVE: Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS: Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS: No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS: Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.


Asunto(s)
Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Lipedema/metabolismo , Lipedema/fisiopatología , Sodio/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Química Encefálica/fisiología , Estudios de Casos y Controles , Femenino , Humanos , Lipedema/diagnóstico , Lipedema/psicología , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Neuroimagen/métodos , Sodio/análisis
9.
Obesity (Silver Spring) ; 26(2): 310-317, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29280322

RESUMEN

OBJECTIVE: To test the hypothesis that tissue sodium and adipose content are elevated in patients with lipedema; if confirmed, this could establish precedence for tissue sodium and adipose content representing a discriminatory biomarker for lipedema. METHODS: Participants with lipedema (n = 10) and control (n = 11) volunteers matched for biological sex, age, BMI, and calf circumference were scanned with 3.0-T sodium and conventional proton magnetic resonance imaging (MRI). Standardized tissue sodium content was quantified in the calf skin, subcutaneous adipose tissue (SAT), and muscle. Dixon MRI was employed to quantify tissue fat and water volumes of the calf. Nonparametric statistical tests were applied to compare regional sodium content and fat-to-water volume between groups (significance: two-sided P ≤ 0.05). RESULTS: Skin (P = 0.01) and SAT (P = 0.04) sodium content were elevated in lipedema (skin: 14.9 ± 2.9 mmol/L; SAT: 11.9 ± 3.1 mmol/L) relative to control participants (skin: 11.9 ± 2.0 mmol/L; SAT: 9.4 ± 1.6 mmol/L). Relative fat-to-water volume in the calf was elevated in lipedema (1.2 ± 0.48 ratio) relative to control participants (0.63 ± 0.26 ratio; P < 0.001). Skin sodium content was directly correlated with fat-to-water volume (Spearman's rho = 0.54; P = 0.01). CONCLUSIONS: Internal metrics of tissue sodium and adipose content are elevated in patients with lipedema, potentially providing objective imaging-based biomarkers for differentially diagnosing the under-recognized condition of lipedema from obesity.


Asunto(s)
Lipedema/sangre , Piel/metabolismo , Sodio/efectos adversos , Grasa Subcutánea/metabolismo , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sodio/metabolismo
10.
J Clin Invest ; 127(5): 1944-1959, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414295

RESUMEN

Natriuretic regulation of extracellular fluid volume homeostasis includes suppression of the renin-angiotensin-aldosterone system, pressure natriuresis, and reduced renal nerve activity, actions that concomitantly increase urinary Na+ excretion and lead to increased urine volume. The resulting natriuresis-driven diuretic water loss is assumed to control the extracellular volume. Here, we have demonstrated that urine concentration, and therefore regulation of water conservation, is an important control system for urine formation and extracellular volume homeostasis in mice and humans across various levels of salt intake. We observed that the renal concentration mechanism couples natriuresis with correspondent renal water reabsorption, limits natriuretic osmotic diuresis, and results in concurrent extracellular volume conservation and concentration of salt excreted into urine. This water-conserving mechanism of dietary salt excretion relies on urea transporter-driven urea recycling by the kidneys and on urea production by liver and skeletal muscle. The energy-intense nature of hepatic and extrahepatic urea osmolyte production for renal water conservation requires reprioritization of energy and substrate metabolism in liver and skeletal muscle, resulting in hepatic ketogenesis and glucocorticoid-driven muscle catabolism, which are prevented by increasing food intake. This natriuretic-ureotelic, water-conserving principle relies on metabolism-driven extracellular volume control and is regulated by concerted liver, muscle, and renal actions.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Cloruro de Sodio Dietético/farmacología , Equilibrio Hidroelectrolítico/efectos de los fármacos , Animales , Riñón/metabolismo , Hígado/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Sodio/orina , Urea/metabolismo
11.
J Clin Invest ; 127(5): 1932-1943, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28414302

RESUMEN

BACKGROUND: The idea that increasing salt intake increases drinking and urine volume is widely accepted. We tested the hypothesis that an increase in salt intake of 6 g/d would change fluid balance in men living under ultra-long-term controlled conditions. METHODS: Over the course of 2 separate space flight simulation studies of 105 and 205 days' duration, we exposed 10 healthy men to 3 salt intake levels (12, 9, or 6 g/d). All other nutrients were maintained constant. We studied the effect of salt-driven changes in mineralocorticoid and glucocorticoid urinary excretion on day-to-day osmolyte and water balance. RESULTS: A 6-g/d increase in salt intake increased urine osmolyte excretion, but reduced free-water clearance, indicating endogenous free water accrual by urine concentration. The resulting endogenous water surplus reduced fluid intake at the 12-g/d salt intake level. Across all 3 levels of salt intake, half-weekly and weekly rhythmical mineralocorticoid release promoted free water reabsorption via the renal concentration mechanism. Mineralocorticoid-coupled increases in free water reabsorption were counterbalanced by rhythmical glucocorticoid release, with excretion of endogenous osmolyte and water surplus by relative urine dilution. A 6-g/d increase in salt intake decreased the level of rhythmical mineralocorticoid release and elevated rhythmical glucocorticoid release. The projected effect of salt-driven hormone rhythm modulation corresponded well with the measured decrease in water intake and an increase in urine volume with surplus osmolyte excretion. CONCLUSION: Humans regulate osmolyte and water balance by rhythmical mineralocorticoid and glucocorticoid release, endogenous accrual of surplus body water, and precise surplus excretion. FUNDING: Federal Ministry for Economics and Technology/DLR; the Interdisciplinary Centre for Clinical Research; the NIH; the American Heart Association (AHA); the Renal Research Institute; and the TOYOBO Biotechnology Foundation. Food products were donated by APETITO, Coppenrath und Wiese, ENERVIT, HIPP, Katadyn, Kellogg, Molda, and Unilever.


Asunto(s)
Glucocorticoides/metabolismo , Mineralocorticoides/metabolismo , Cloruro de Sodio Dietético/administración & dosificación , Vuelo Espacial , Equilibrio Hidroelectrolítico/efectos de los fármacos , Agua/metabolismo , Adulto , Humanos , Masculino
12.
Diab Vasc Dis Res ; 6(3): 200-4, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20368212

RESUMEN

In the present study we investigated the anti-hyperglycaemic and antioxidant effect of grape seed extract, a polyphenolic flavonoid, in normal and streptozotocin-induced diabetic Wistar rats. Adult male Wistar rats were divided into three groups: Group I: non-diabetic control; Group II: diabetic control; Group III: diabetic rats treated with grape seed extract, administered via an intragastric tube (0.6 ml/rat), at a dose of 100 mg/kg for 20 consecutive days after the induction of diabetes mellitus. Diabetes was induced by an i.p. injection with streptozotocin for groups II and III. TheTBARS, carbonylated proteins, were measured in the plasma and in the supernatant of liver homogenisates, and superoxide dismutase and catalase were measured in the haemolysates of RBCs and supernatant of liver homogenisates. The results showed that oral administration of grape seed extract (100 mg/kg/day) reduced the levels of lipid peroxides and carbonylated proteins and improved the antioxidant activity in plasma and hepatic tissue in rats treated with grape seed natural extract as compared with the diabetic control rats. These results suggested that the grape seed extract enhanced the antioxidant defence against reactive oxygen species produced under hyperglycaemic conditions, hence protecting the liver cells.


Asunto(s)
Antioxidantes/farmacología , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Extractos Vegetales/farmacología , Vitis , Administración Oral , Animales , Antioxidantes/administración & dosificación , Glucemia/metabolismo , Catalasa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Frutas , Hipoglucemiantes/administración & dosificación , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Extractos Vegetales/administración & dosificación , Carbonilación Proteica , Ratas , Ratas Wistar , Semillas , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...