RESUMEN
This study aimed to evaluate the effects of Protium heptaphyllum fruit essential oil (PHEO) on the physiology of silver catfish (Rhamdia quelen) during anesthesia and recovery, through studying echocardiograms, oxidative status, and metabolic parameters. Three experiments were performed: (1) 50 silver catfish juveniles were submitted to anesthesia and recovery tests with 300, 400, 500, 600, and 700 mg L-1 of PHEO. (2) Echocardiogram analysis was performed in anesthetized and non-anesthetized fish. (3) Biochemical parameters were evaluated at 0, 30, 60, and 120 min of recovery after being anesthetized for 3 min with 600 mg L-1 PHEO. Times to sedation and deep anesthesia were reduced with PHEO increasing concentrations. The echocardiogram showed a higher cardiac rate in anesthetized fish. Plasma glucose levels increased in control fish through recovery time, but anesthetized fish showed lower levels than controls at 120 min of recovery. Metabolic parameters such as plasma and hepatic glucose did not show changes considering the recovery time of up to 120 min. Hepatic glycogen, lactate, and triglycerides reduced their levels over recovery times. Fish anesthetized enhanced superoxide dismutase activity and thiobarbituric acid reactive substances levels but decreased reduced glutathione (GSH) levels at 30 min compared to controls. After 60 min, GSH values were significantly higher in anesthetized fish than in controls. These results suggest that PHEO at 600 mg L-1 is an effective anesthetic for the rapid handling of silver catfish, providing stable metabolic parameters and enhanced antioxidant responses during recovery. Echocardiogram analysis confirms the anesthetic effect, supporting PHEO as a viable and efficient option for fish anesthesia in aquaculture. The use of PHEO in aquaculture can enhance fish welfare by reducing stress during handling and transportation, potentially leading to improved growth, health, and survival rates.
RESUMEN
This study aimed to verify the effect of different feeding and stocking conditions during 14 days on the gene expression of several hormones and enzymes related to the stress cascade and metabolic parameters in silver catfish Rhamdia quelen under the following experimental conditions: 1) fed at low stocking density (2.5 kg m-3, LSD-F); 2) fed at high stocking density (32 kg m-3, HSD-F); 3) food-deprived at LSD (LSD-FD); and 4) food-deprived at HSD (HSD-FD). Fish from LSD-F and HSD-F groups were fed daily (1 % of their body mass), while fish from food-deprived groups (LSD-FD and HSD-FD) were not fed during the experimental time. Plasma metabolic parameters (glucose, lactate, triglycerides, and proteins) and hepatosomatic index (HSI) were evaluated. In addition, mRNA expression of genes related to the stress axis (crh, pomca, pomcb, nr3c2, star, hsd11b2 and hsd20b), heat shock protein family (hsp90 and hspa12a), sodium-dependent noradrenaline transporter (slc6a2), and growth axis (gh and igf1) were also assessed. Specific growth rate and HSI decreased in food-deprived fish regardless of stocking density. The HSD-FD group showed weight loss compared to the HSD-F, LSD-F, and LSD-FD groups. Plasma glucose and triglycerides were reduced in food-deprived groups, while lactate and protein levels did not change. The expression of key players of the stress response (crh, pomca, pomcb, hsd11b2, nr3c2, and hsp90b) and growth (gh and igf1) pathways were differently regulated depending on the experimental condition, whereas no statistical difference between treatments was found for hsd20b, scl6a2, hspa12a, and star mRNAs expression. This study suggests that LSD acts as a stressor affecting negatively the physiological status of fed fish, as demonstrated by the reduction in growth rates, altered metabolic orchestration, and a higher crh mRNA expression. In addition, food deprivation also increased mRNA expression of other assessed genes (nr3c2, hsp90b, pomca, and pomcb) in fish from the HSD group, indicating higher responsiveness to stress in this stocking density when combined with food deprivation.
Asunto(s)
Bagres , Animales , Proteínas de Choque Térmico , Proteínas HSP90 de Choque Térmico , Lactatos , ARN MensajeroRESUMEN
In fish, stressful events initiate a hormone cascade along the hypothalamus-pituitary-interrenal and hypothalamus-sympathetic-chromaffin (HSC) axis to evoke several physiological reactions in order to orchestrate and maintain homeostasis. Several biotic and abiotic factors, as well as aquaculture procedures (handling, transport, or stocking density), activated stress system inducing negative effects on different physiological processes in fish (growth, reproduction, and immunity). In order to reduce these consequences, the use of essential oils (EOs) derived from plants has been the focus of aquaculture studies due to their diverse properties (e.g., anesthetic, antioxidant, and antimicrobial), which have been shown to reduce biochemical and endocrine alterations and, consequently, to improve the welfare status. Recently, several studies have shown that biogenic compounds isolated from different EOs present excellent biological activities, as well as the nanoencapsulated form of these EOs may potentiate their effects. Overall, EOs presented less side effects than synthetic compounds, but their stress-reducing efficacy is related to their chemical composition, concentration or chemotype used. In addition, their species-specific actions must be clearly established since they can act as stressors by themselves if their concentrations and chemotypes used are not suitable. For this reason, it is necessary to assess the effect of these natural compound mixtures in different fish species, from marine to freshwater, in order to find the ideal concentration range and the way for their administration to obtain the desired biological activity, without any undesired side effects. In this review, the main findings regarding the use of different EOs as stress reducers will be presented to highlight the most important issues related to their use to improve fish welfare in aquaculture.
RESUMEN
Alpha-amylases are ubiquitously distributed throughout microbials, plants and animals. It is widely accepted that omnivorous crustaceans have higher α-amylase activity and number of isoforms than carnivorous, but contradictory results have been obtained in some species, and carnivorous crustaceans have been less studied. In addition, the physiological meaning of α-amylase polymorphism in crustaceans is not well understood. In this work we studied α-amylase in a carnivorous lobster at the gene, transcript, and protein levels. It was showed that α-amylase isoenzyme composition (i.e., phenotype) in lobster determines carbohydrate digestion efficiency. Most frequent α-amylase phenotype has the lowest digestion efficiency, suggesting this is a favoured trait. We revealed that gene and intron loss have occurred in lobster α-amylase, thus lobsters express a single 1830 bp cDNA encoding a highly conserved protein with 513 amino acids. This protein gives rise to two isoenzymes in some individuals by glycosylation but not by limited proteolysis. Only the glycosylated isoenzyme could be purified by chromatography, with biochemical features similar to other animal amylases. High carbohydrate content in diet down-regulates α-amylase gene expression in lobster. However, high α-amylase activity occurs in lobster gastric juice irrespective of diet and was proposed to function as an early sensor of the carbohydrate content of diet to regulate further gene expression. We concluded that gene/isoenzyme simplicity, post-translational modifications and low Km, coupled with a tight regulation of gene expression, have arose during evolution of α-amylase in the carnivorous lobster to control excessive carbohydrate digestion in the presence of an active α-amylase.
Asunto(s)
Proteínas de Artrópodos , Carnivoría/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Palinuridae , alfa-Amilasas , Animales , Proteínas de Artrópodos/biosíntesis , Proteínas de Artrópodos/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Glicosilación , Isoenzimas/biosíntesis , Isoenzimas/genética , Palinuridae/genética , Palinuridae/metabolismo , Proteolisis , alfa-Amilasas/biosíntesis , alfa-Amilasas/genéticaRESUMEN
This study investigated the effects of prolonged exposure of silver catfish (Rhamdia quelen) to the essential oil (EO) of Hesperozygis ringens. Ventilatory rate (VR), stress and metabolic indicators, energy enzyme activities, and mRNA expression of adenohypophyseal hormones were examined in specimens that were exposed for 6 h to 0 (control), 30 or 50 µL L(-1) EO of H. ringens in water. Reduction in VR was observed in response to each treatment, but no differences were found between treatments. Plasma glucose, protein, and osmolality increased in fish exposed to 50 µL L(-1). Moreover, lactate levels increased after exposure to both EO concentrations. Plasma cortisol levels were not changed by EO exposure. Fish exposed to 30 µL L(-1) EO exhibited higher glycerol-3-phosphate dehydrogenase (G3PDH) activity, while exposure to 50 µL L(-1) EO elicited an increase in glucose-6-phosphate dehydrogenase (G6PDH), fructose-biphosphatase (FBP), and 3-hydroxyacyl-CoA-dehydrogenase (HOAD) activities compared with the control group. Expression of growth hormone (GH) only decreased in fish exposed to 50 µL L(-1) EO, while somatolactin (SL) expression decreased in fish exposed to both concentrations of EO. Exposure to EO did not change prolactin expression. The results indicate that GH and SL are associated with energy reorganization in silver catfish. Fish were only slightly affected by 30 µL L(-1) EO of H. ringens, suggesting that it could be used in practices where a reduction in the movement of fish for prolonged periods is beneficial, i.e., such as during fish transportation.
Asunto(s)
Acuicultura/métodos , Bagres/fisiología , Lamiaceae/química , Aceites Volátiles/efectos adversos , Estrés Fisiológico/efectos de los fármacos , 3-Hidroxiacil-CoA Deshidrogenasas/metabolismo , Análisis de Varianza , Animales , Glucemia/efectos de los fármacos , Proteínas Sanguíneas/efectos de los fármacos , Cartilla de ADN/genética , Proteínas de Peces/metabolismo , Fructosa-Bifosfatasa/metabolismo , Glucosafosfato Deshidrogenasa/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Glicoproteínas/metabolismo , Hormona del Crecimiento/metabolismo , Hidrocortisona/metabolismo , Concentración Osmolar , Consumo de Oxígeno/efectos de los fármacos , Hormonas Hipofisarias/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Espectrofotometría/veterinaria , Estrés Fisiológico/fisiologíaRESUMEN
In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.