Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 10(12)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36551816

RESUMEN

The significant roles of extracellular vesicles (EVs) as intracellular mediators, disease biomarkers, and therapeutic agents, make them a scientific hotspot. In particular, EVs secreted by human stem cells show significance in treating neurological disorders, such as Alzheimer's disease and ischemic stroke. However, the clinical applications of EVs are limited due to their poor targeting capabilities and low therapeutic efficacies after intravenous administration. Superparamagnetic iron oxide (SPIO) nanoparticles are biocompatible and have been shown to improve the targeting ability of EVs. In particular, ultrasmall SPIO (USPIO, <50 nm) are more suitable for labeling nanoscale EVs due to their small size. In this study, induced forebrain neural progenitor cortical organoids (iNPCo) were differentiated from human induced pluripotent stem cells (iPSCs), and the iNPCo expressed FOXG1, Nkx2.1, α-catenin, as well as ß-tubulin III. EVs were isolated from iNPCo media, then loaded with USPIOs by sonication. Size and concentration of EV particles were measured by nanoparticle tracking analysis, and no significant changes were observed in size distribution before and after sonication, but the concentration decreased after labeling. miR-21 and miR-133b decreased after sonication. Magnetic resonance imaging (MRI) demonstrated contrast visualized for the USPIO labeled EVs embedded in agarose gel phantoms. Upon calculation, USPIO labeled EVs exhibited considerably shorter relaxation times, quantified as T2 and T2* values, reducing the signal intensity and generating higher MRI contrast compared to unlabeled EVs and gel only. Our study demonstrated that USPIO labeling was a feasible approach for in vitro tracking of brain organoid-derived EVs, which paves the way for further in vivo examination.

2.
Artículo en Inglés | MEDLINE | ID: mdl-36561642

RESUMEN

Background: Recently, the in vitro blood brain barrier (BBB) models derived from human pluripotent stem cells have been given extensive attention in therapeutics due to the implications it has with the health of the central nervous system. It is essential to create an accurate BBB model in vitro in order to better understand the properties of the BBB and how it can respond to inflammatory stimulation and be passed by targeted or non-targeted cell therapeutics, more specifically extracellular vesicles. Methods: Brain-specific pericytes (iPCs) were differentiated from iPSK3 cells using dual SMAD signaling inhibitors and Wnt activation plus fibroblast growth factor 2 (FGF-2). The derived cells were characterized by immunostaining, flow cytometry and RT-PCR. In parallel, blood vessels organoids were derived using Wnt activation, BMP4, FGF2, VEGF and SB431542. The organoids were replated and treated with retinoic acid to enhance the blood brain barrier (BBB) features in the differentiated brain endothelial cells (iECs). Co-culture was performed for the iPCs and iECs in transwell system and 3-D microfluidics channels. Results: The derived iPCs expressed common markers PDGFRb and NG2, as well as brain-specific genes FOXF2, ABCC9, KCNJ8, and ZIC1. The derived iECs expressed common endothelial cell markers CD31, VE-cadherin, as well as BBB-associated genes BRCP, GLUT-1, PGP, ABCC1, OCLN, SLC2A1. The co-culture of the two cell types responded to the stimulation of amyloid ß42 oligomers by the upregulation of expression of TNFa, IL6, NFKB, Casp3, SOD2 and TP53. The co-culture also showed the property of trans-endothelial electrical resistance. The proof-of-concept vascularization strategy was demonstrated in a 3-D microfluidics-based device. Conclusion: The derived iPCs and iECs have brain-specific properties and the co-culture of iPCs and iECs provides an in vitro BBB model that show inflammatory response. This study has significance in establishing micro-physiological systems for neurological disease modeling and drug screening.

3.
ACS Biomater Sci Eng ; 7(3): 1111-1122, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33525864

RESUMEN

Stem-cell-derived extracellular vesicles (EVs) are promising tools for therapeutic delivery and imaging in the medical research fields. EVs that arise from endosomal compartments or plasma membrane budding consist of exosomes and microvesicles, which range between 30 and 200 nm and 100-1000 nm, respectively. Iron oxide nanoparticles can be used to label stem cells or possibly EVs for magnetic resonance imaging. This could be a novel way to visualize areas in the body that are affected by neurological disorders such as stroke. Human induced pluripotent stem cells (iPSK3 cells) were plated on low-attachment plates and treated with SB431542 and LDN193189 during the first week for the induction of cortical spheroid formation and grown with fibroblast growth factor 2 and cyclopamine during the second week for the neural progenitor cell (iNPC) differentiation. iNPCs were then grown on attachment plates and treated with iron oxide (Fe3O4) nanoparticles at different sizes (8, 15, and 30 nm in diameter) and concentrations (0.1, 10, and 100 µM). The spheroids and media collected from these cultures were used for iron oxide detection as well as EV isolation and characterizations, respectively. MTT assay demonstrated that the increased size and concentration of the iron oxide nanoparticles had little effect on the metabolic activity of iNPCs. In addition, the Live/Dead assay showed high viability in all the nanoparticle treated groups and the untreated control. The EVs isolated from these culture groups were analyzed and displayed similar or higher EV counts compared with control. The observed EV size averaged 200-250 nm, and electron microscopy revealed the expected exosome morphology for EVs from all groups. RT-PCR analysis of EV biogenesis markers (CD63, CD81, Alix, TSG101, Syntenin1, ADAM10, RAB27b, and Syndecan) showed differential expression between the iron-oxide-treated cultures and nontreated cultures, as well as between adherent and nonadherent 3D cultures. Iron oxide nanoparticles were detected inside the cortical spheroid cells but not EVs by MRI. The addition of iron oxide nanoparticles does not induce significant cytotoxic effects to cortical spheroids. In addition,, nanoparticles may stimulate the biogenesis of EVs when added to cortical spheroids in vitro.


Asunto(s)
Vesículas Extracelulares , Células Madre Pluripotentes Inducidas , Compuestos Férricos , Humanos , Hierro , Óxidos
4.
Tissue Eng Part B Rev ; 26(4): 367-382, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32571167

RESUMEN

Pericytes (PCs) are a type of perivascular cells that surround endothelial cells of small blood vessels. In the brain, PCs show heterogeneity depending on their position within the vasculature. As a result, PC interactions with surrounding endothelial cells, astrocytes, and neuron cells play a key role in a wide array of neurovascular functions such as regulating blood-brain barrier (BBB) permeability, cerebral blood flow, and helping to facilitate the clearance of toxic cellular molecules. Therefore, a reliable method of engineering brain-specific PCs from human induced pluripotent stem cells (hiPSCs) is critical in neurodegenerative disease modeling. This review summarizes brain-specific PC differentiation of hiPSCs through mesoderm and neural crest induction. Key signaling pathways (platelet-derived growth factor-B [PDGF-B], transforming growth factor [TGF]-ß, and Notch signaling) regulating PC function, PC interactions with adjacent cells, and PC differentiation from hiPSCs are also discussed. Specifically, PDGF-BB-platelet-derived growth factor receptor ß signaling promotes PC cell survival, TGF-ß signal transduction facilitates PC attachment to endothelial cells, and Notch signaling is critical in vascular development and arterial-venous specification. Furthermore, current challenges facing the use of hiPSC-derived PCs are discussed, and their ongoing uses in neurodegenerative disease modeling are identified. Further investigations into PCs and surrounding cell interactions are needed to characterize the roles of brain PCs in various neurodegenerative disorders. Impact statement This article summarizes the work related to brain-specific pericytes (PCs) derived from human pluripotent stem cells (hPSCs). In particular, key signaling pathways regulating PC function, PC interactions with adjacent cells, and PC differentiation from hPSCs were discussed. Furthermore, current challenges facing the use of hPSC-derived PCs were identified, and their ongoing uses in neurodegenerative disease modeling were discussed. The review highlights the important role of cell-cell interactions in blood-brain barrier (BBB) models and neurodegeneration. The summarized findings are significant for establishing pluripotent stem cell-based BBB models toward the applications in drug screening and disease modeling.


Asunto(s)
Encéfalo/citología , Diferenciación Celular , Linaje de la Célula , Enfermedades Neurodegenerativas/terapia , Pericitos/citología , Células Madre Pluripotentes/citología , Ingeniería de Tejidos/métodos , Animales , Humanos
5.
Tissue Eng Part A ; 26(9-10): 527-542, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31696783

RESUMEN

Astrocytes are vital components in neuronal circuitry and there is increasing evidence linking the dysfunction of these cells to a number of central nervous system diseases. Studying the role of these cells in human brain function in the past has been difficult due to limited access to the human brain. In this study, human induced pluripotent stem cells were differentiated into astrospheres using a hybrid plating method, with or without dual SMAD inhibition. The derived cells were assessed for astrocytic markers, brain regional identity, phagocytosis, calcium-transient signaling, reactive oxygen species production, and immune response. Neural degeneration was modeled by stimulation with amyloid-ß (Aß) 42 oligomers. Finally, co-culture was performed for the derived astrospheres with isogenic neurospheres. Results indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix, and are capable of phagocytosing iron oxide particles and responding to Aß42 stimulation (higher oxidative stress, higher TNF-α, and IL-6 expression). RNA-sequencing results reveal the distinct transcriptome of the derived cells responding to Aß42 stimulation for astrocyte markers, chemokines, and brain regional identity. Co-culture experiments show the synaptic activities of neurons and the enhanced neural protection ability of the astroglial cells. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and the formation of engineered neuronal synapses in vitro. The implications lie in neurological disease modeling, drug screening, and studying progression of neural degeneration and the role of stem cell microenvironment. Impact Statement Human pluripotent stem cell-derived astrocytes are a powerful tool for disease modeling and drug screening. However, the properties regarding brain regional identity and the immune response to neural degeneration stimulus have not been well characterized. Results of this study indicate that the derived astroglial cells express astrocyte markers with forebrain dorsal cortical identity, secrete extracellular matrix (ECM), and are capable of phagocytosing iron oxide particles and responding to amyloid-ß oligomers, showing the distinct transcriptome in astrocyte markers, chemokines, and brain regional identity. This study provides knowledge about the roles of brain astroglial cells, heterotypic cell-cell interactions, and engineering neural tissues in vitro.


Asunto(s)
Péptidos beta-Amiloides/química , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes/citología , Astrocitos/citología , Astrocitos/metabolismo , Células Cultivadas , Humanos , Degeneración Nerviosa/fisiopatología , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Prosencéfalo/metabolismo , Transducción de Señal/fisiología , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
6.
Tissue Eng Part B Rev ; 26(2): 129-144, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31847715

RESUMEN

Extracellular vesicles (EVs), including exosomes and microvesicles, are found to play an important role in various biological processes and maintaining tissue homeostasis. Because of the protective effects, stem cell-derived EVs can be used to reduce oxidative stress and apoptosis in the recipient cells. In addition, EVs/exosomes have been used as directional communication tools between stem cells and parenchymal cells, giving them the ability to serve as biomarkers. Likewise, altered EVs/exosomes can be utilized for drug delivery by loading with proteins, small interfering RNAs, and viral vectors, in particular, because EVs/exosomes are able to cross the blood-brain barrier. In this review article, the properties of human induced pluripotent stem cell (iPSC)-derived EVs are discussed. The biogenesis, that is, how EVs originate in the endosomal compartment or from the cell layer of microvesicles, EV composition, the available methods of purification, and characterizations of EVs/exosomes are summarized. In particular, EVs/exosomes derived from iPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. Impact statement In this review, we summarized the work related to extracellular vesicles (EVs) derived from human pluripotent stem cells (hPSCs). In particular, EVs/exosomes derived from hPSCs of different lineage specifications and the applications of these stem cell-derived exosomes in neurological diseases are discussed. The results highlight the important role of cell-cell interactions in neural cellular phenotype and neurodegeneration. The findings reported in this article are significant for pluripotent stem cell-derived cell-free products toward applications in stem cell-based therapies.


Asunto(s)
Comunicación Celular , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Vesículas Extracelulares/fisiología , Células Madre Pluripotentes Inducidas/citología , Enfermedades del Sistema Nervioso/terapia , Ingeniería de Tejidos/métodos , Animales , Humanos
7.
Tissue Eng Part A ; 26(7-8): 419-431, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31686622

RESUMEN

The human brain formation involves complicated processing, which is regulated by a gene regulatory network influenced by different signaling pathways. The cross-regulatory interactions between elements of different pathways affect the process of cell fate assignment during neural and astroglial tissue patterning. In this study, the interactions between Wnt and Notch pathways, the two major pathways that influence neural and astroglial differentiation of human induced pluripotent stem cells (hiPSCs) individually, were investigated. In particular, the synergistic effects of Wnt-Notch pathway on the neural patterning processes along the anterior-posterior or dorsal-ventral axis of hiPSC-derived cortical spheroids were explored. The human cortical spheroids derived from hiPSCs were treated with Wnt activator CHIR99021 (CHIR), Wnt inhibitor IWP4, and Notch inhibitor (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester [DAPT]) individually, or in combinations (CHIR + DAPT, IWP4 + DAPT). The results suggest that CHIR + DAPT can promote Notch signaling, similar or higher than CHIR alone, whereas IWP4 + DAPT reduces Notch activity compared to IWP4 alone. Also, CHIR + DAPT promoted hindbrain marker HOXB4 expression more consistently than CHIR alone, while IWP4 + DAPT promoted Olig2 expression, indicating the synergistic effects distinctly different from that of the individual small molecule. In addition, IWP4 simultaneously promoted dorsal and ventral identity. The patterned neural spheroids can be switched for astroglial differentiation using bone morphogenetic protein 4. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from hiPSCs for disease modeling, drug screening, as well as for hiPSC-based therapies. Impact Statement Wnt signaling plays a central role in neural patterning of human pluripotent stem cells. It can interact with Notch signaling in defining dorsal-ventral and rostral-caudal (or anterior-posterior) axis of brain organoids. This study investigates novel Wnt and Notch interactions (i.e., Wntch) in neural patterning of dorsal forebrain spheroids or organoids derived from human induced pluripotent stem cells. The synergistic effects of Wnt activator or inhibitor with Notch inhibitor were observed. This study should advance the derivations of neurons, astroglial cells, and brain region-specific organoids from human stem cells for disease modeling and drug screening, as well as for stem cell-based therapies. The results can be used to establish better in vitro culture methods for efficiently mimicking in vivo structure of central nervous system.


Asunto(s)
Neuronas/citología , Neuronas/metabolismo , Vía de Señalización Wnt/fisiología , Astrocitos/citología , Astrocitos/metabolismo , Western Blotting , Señalización del Calcio/fisiología , Diferenciación Celular/fisiología , Citometría de Flujo , Humanos , Inmunohistoquímica , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Receptores Notch/metabolismo
8.
Sci Rep ; 9(1): 11055, 2019 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-31363137

RESUMEN

Current brain spheroids or organoids derived from human induced pluripotent stem cells (hiPSCs) still lack a microglia component, the resident immune cells in the brain. The objective of this study is to engineer brain region-specific organoids from hiPSCs incorporated with isogenic microglia-like cells in order to enhance immune function. In this study, microglia-like cells were derived from hiPSCs using a simplified protocol with stage-wise growth factor induction, which expressed several phenotypic markers, including CD11b, IBA-1, CX3CR1, and P2RY12, and phagocytosed micron-size super-paramagnetic iron oxides. The derived cells were able to upregulate pro-inflammatory gene (TNF-α) and secrete anti-inflammatory cytokines (i.e., VEGF, TGF-ß1, and PGE2) when stimulated with amyloid ß42 oligomers, lipopolysaccharides, or dexamethasone. The derived isogenic dorsal cortical (higher expression of TBR1 and PAX6) and ventral (higher expression of NKX2.1 and PROX1) spheroids/organoids displayed action potentials and synaptic activities. Co-culturing the microglia-like cells (MG) with the dorsal (D) or ventral (V) organoids showed differential migration ability, intracellular Ca2+ signaling, and the response to pro-inflammatory stimuli (V-MG group had higher TNF-α and TREM2 expression). Transcriptome analysis exhibited 37 microglia-related genes that were differentially expressed in MG and D-MG groups. In addition, the hybrid D-MG spheroids exhibited higher levels of immunoreceptor genes in activating members, but the MG group contained higher levels for most of genes in inhibitory members (except SIGLEC5 and CD200). This study should advance our understanding of the microglia function in brain-like tissue and establish a transformative approach to modulate cellular microenvironment toward the goal of treating various neurological disorders.


Asunto(s)
Encéfalo/metabolismo , Microglía/metabolismo , Esferoides Celulares/metabolismo , Péptidos beta-Amiloides/farmacología , Encéfalo/efectos de los fármacos , Diferenciación Celular , Movimiento Celular , Citocinas/metabolismo , Dexametasona/farmacología , Humanos , Células Madre Pluripotentes Inducidas , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Esferoides Celulares/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
9.
Cells ; 8(9)2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31466320

RESUMEN

Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and the undifferentiated hiPSCs (healthy iPSK3 and Alzheimer's-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100-250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by ß-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aß42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration.


Asunto(s)
Ectodermo/citología , Vesículas Extracelulares/metabolismo , Células Madre Pluripotentes Inducidas/citología , Mesodermo/citología , Esferoides Celulares/citología , Biomarcadores/metabolismo , Diferenciación Celular , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Ectodermo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Mesodermo/metabolismo , MicroARNs/genética , Nanopartículas , Comunicación Paracrina , Tamaño de la Partícula , Esferoides Celulares/metabolismo
10.
Cells ; 8(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30939814

RESUMEN

Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of the human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes (i.e., the tissue resident mesenchymal stromal cells), astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. In addition, most cortical organoids lack a microglia component, the resident immune cells in the brain. Impairment of the blood-brain barrier caused by improper crosstalk between neural cells and vascular cells is associated with many neurodegenerative disorders. Mesenchymal stem cells (MSCs), with a phenotype overlapping with pericytes, have promotion effects on neurogenesis and angiogenesis, which are mainly attributed to secreted growth factors and extracellular matrices. As the innate macrophages of the central nervous system, microglia regulate neuronal activities and promote neuronal differentiation by secreting neurotrophic factors and pro-/anti-inflammatory molecules. Neuronal-microglia interactions mediated by chemokines signaling can be modulated in vitro for recapitulating microglial activities during neurodegenerative disease progression. In this review, we discussed the cellular interactions and the physiological roles of neural cells with other cell types including endothelial cells and microglia based on iPSC models. The therapeutic roles of MSCs in treating neural degeneration and pathological roles of microglia in neurodegenerative disease progression were also discussed.


Asunto(s)
Encéfalo/patología , Comunicación Celular , Modelos Biológicos , Degeneración Nerviosa/patología , Células Madre Pluripotentes/patología , Encéfalo/irrigación sanguínea , Humanos , Microglía/patología
11.
Cells ; 8(3)2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30875781

RESUMEN

The mechanism that causes the Alzheimer's disease (AD) pathologies, including amyloid plaque, neurofibrillary tangles, and neuron death, is not well understood due to the lack of robust study models for human brain. Three-dimensional organoid systems based on human pluripotent stem cells (hPSCs) have shown a promising potential to model neurodegenerative diseases, including AD. These systems, in combination with engineering tools, allow in vitro generation of brain-like tissues that recapitulate complex cell-cell and cell-extracellular matrix (ECM) interactions. Brain ECMs play important roles in neural differentiation, proliferation, neuronal network, and AD progression. In this contribution related to brain ECMs, recent advances in modeling AD pathology and progression based on hPSC-derived neural cells, tissues, and brain organoids were reviewed and summarized. In addition, the roles of ECMs in neural differentiation of hPSCs and the influences of heparan sulfate proteoglycans, chondroitin sulfate proteoglycans, and hyaluronic acid on the progression of neurodegeneration were discussed. The advantages that use stem cell-based organoids to study neural degeneration and to investigate the effects of ECM development on the disease progression were highlighted. The contents of this article are significant for understanding cell-matrix interactions in stem cell microenvironment for treating neural degeneration.


Asunto(s)
Matriz Extracelular/metabolismo , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Organoides/metabolismo , Células Madre Pluripotentes/citología , Enfermedad de Alzheimer/patología , Animales , Humanos , Proteoglicanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA