Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Biophys J ; 122(24): 4730-4747, 2023 12 19.
Article En | MEDLINE | ID: mdl-37978804

Vascular endothelial cells (ECs) form a semipermeable barrier separating vascular contents from the interstitium, thereby regulating the movement of water and molecular solutes across small intercellular gaps, which are continuously forming and closing. Under inflammatory conditions, however, larger EC gaps form resulting in increased vascular leakiness to circulating fluid, proteins, and cells, which results in organ edema and dysfunction responsible for key pathophysiologic findings in numerous inflammatory disorders. In this study, we extend our earlier work examining the biophysical properties of EC gap formation and now address the role of lamellipodia, thin sheet-like membrane projections from the leading edge, in modulating EC spatial-specific contractile properties and gap closure. Micropillars, fabricated by soft lithography, were utilized to form reproducible paracellular gaps in human lung ECs. Using time-lapse imaging via optical microscopy, rates of EC gap closure and motility were measured with and without EC stimulation with the barrier-enhancing sphingolipid, sphingosine-1-phosphate. Peripheral ruffle formation was ubiquitous during gap closure. Kymographs were generated to quantitatively compare the lamellipodia dynamics of sphingosine-1-phosphate-stimulated and -unstimulated ECs. Utilizing atomic force microscopy, we characterized the viscoelastic behavior of EC lamellipodia. Our results indicate decreased stiffness and increased liquid-like behavior of expanding lamellipodia compared with regions away from the cellular edge (lamella and cell body) during EC gap closure, results in sync with the rapid kinetics of protrusion/retraction motion. We hypothesize this dissipative EC behavior during gap closure is linked to actomyosin cytoskeletal rearrangement and decreased cross-linking during lamellipodia expansion. In summary, these studies of the kinetic and mechanical properties of EC lamellipodia and ruffles at gap boundaries yield insights into the mechanisms of vascular barrier restoration and potentially a model system for examining the druggability of lamellipodial protein targets to enhance vascular barrier integrity.


Endothelial Cells , Pseudopodia , Humans , Pseudopodia/metabolism , Lysophospholipids/metabolism , Cytoskeleton/metabolism , Endothelium, Vascular/metabolism , Cells, Cultured
2.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166562, 2022 12 01.
Article En | MEDLINE | ID: mdl-36179995

The loss of vascular integrity is a cardinal feature of acute inflammatory responses evoked by activation of the TLR4 inflammatory cascade. Utilizing in vitro and in vivo models of inflammatory lung injury, we explored TLR4-mediated dysregulated signaling that results in the loss of endothelial cell (EC) barrier integrity and vascular permeability, focusing on Dock1 and Elmo1 complexes that are intimately involved in regulation of Rac1 GTPase activity, a well recognized modulator of vascular integrity. Marked reductions in Dock1 and Elmo1 expression was observed in lung tissues (porcine, rat, mouse) exposed to TLR4 ligand-mediated acute inflammatory lung injury (LPS, eNAMPT) in combination with injurious mechanical ventilation. Lung tissue levels of Dock1 and Elmo1 were preserved in animals receiving an eNAMPT-neutralizing mAb in conjunction with highly significant decreases in alveolar edema and lung injury severity, consistent with Dock1/Elmo1 as pathologic TLR4 targets directly involved in inflammation-mediated loss of vascular barrier integrity. In vitro studies determined that pharmacologic inhibition of Dock1-mediated activation of Rac1 (TBOPP) significantly exacerbated TLR4 agonist-induced EC barrier dysfunction (LPS, eNAMPT) and attenuated increases in EC barrier integrity elicited by barrier-enhancing ligands of the S1P1 receptor (sphingosine-1-phosphate, Tysiponate). The EC barrier-disrupting influence of Dock1 inhibition on S1PR1 barrier regulation occurred in concert with: 1) suppressed formation of EC barrier-enhancing lamellipodia, 2) altered nmMLCK-mediated MLC2 phosphorylation, and 3) upregulation of NOX4 expression and increased ROS. These studies indicate that Dock1 is essential for maintaining EC junctional integrity and is a critical target in TLR4-mediated inflammatory lung injury.


Acute Lung Injury , Capillary Permeability , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , GTP Phosphohydrolases/metabolism , Ligands , Lipopolysaccharides/pharmacology , Mice , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , Rats , Reactive Oxygen Species/metabolism , Receptors, Lysosphingolipid/metabolism , Sphingosine-1-Phosphate Receptors , Swine , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Up-Regulation
3.
Cell Physiol Biochem ; 56(4): 329-339, 2022 Jul 20.
Article En | MEDLINE | ID: mdl-35856787

BACKGROUND/AIMS: Increase in vascular permeability is a cardinal feature of all inflammatory diseases and represents an imbalance in vascular contractile forces and barrier-restorative forces, both of which are highly dependent on actin cytoskeletal dynamics. In addition to the involvement of key vascular barrier-regulatory, actin-binding proteins, such as nmMLCK and cortactin, we recently demonstrated a role for a member of the Ena-VASP family known as Ena-VASP-like (EVL) in promoting vascular focal adhesion (FA) remodeling and endothelial cell (EC) barrier restoration/preservation. METHODS: To further understand the role of EVL in EC barrier-regulatory processes, we examined EVL-cytoskeletal protein interactions in FA dynamics in vitro utilizing lung EC and in vivo murine models of acute inflammatory lung injury. Deletion mapping studies and immunoprecipitation assays were performed to detail the interaction between EVL and cortactin, and further evaluated by assessment of changes in vascular EC permeability following disruption of EVL-cortactin interaction. RESULTS: Initial studies focusing on the actin-binding proteins, nmMLCK and cortactin, utilized deletion mapping of the cortactin gene (CTTN) to identify cortactin domains critical for EVL-cortactin interaction and verified the role of actin in promoting EVL-cortactin interaction. A role for profilins, actin-binding proteins that regulate actin polymerization, was established in facilitating EVL-FA binding. CONCLUSION: In summary, these studies further substantiate EVL participation in regulation of vascular barrier integrity and in the highly choreographed cytoskeletal interactions between key FA and cytoskeletal partners.


Actins , Cortactin , Actins/metabolism , Animals , Cell Adhesion , Cortactin/metabolism , Endothelial Cells/metabolism , Focal Adhesions/metabolism , Mice
4.
Pulm Circ ; 11(4): 20458940211049002, 2021.
Article En | MEDLINE | ID: mdl-34631011

Increases in lung vascular permeability is a cardinal feature of inflammatory disease and represents an imbalance in vascular contractile forces and barrier-restorative forces, with both forces highly dependent upon the actin cytoskeleton. The current study investigates the role of Ena-VASP-like (EVL), a member of the Ena-VASP family known to regulate the actin cytoskeleton, in regulating vascular permeability responses and lung endothelial cell barrier integrity. Utilizing changes in transendothelial electricial resistance (TEER) to measure endothelial cell barrier responses, we demonstrate that EVL expression regulates endothelial cell responses to both sphingosine-1-phospate (S1P), a vascular barrier-enhancing agonist, and to thrombin, a barrier-disrupting stimulus. Total internal reflection fluorescence demonstrates that EVL is present in endothelial cell focal adhesions and impacts focal adhesion size, distribution, and the number of focal adhesions generated in response to S1P and thrombin challenge, with the focal adhesion kinase (FAK) a key contributor in S1P-stimulated EVL-transduced endothelial cell but a limited role in thrombin-induced focal adhesion rearrangements. In summary, these data indicate that EVL is a focal adhesion protein intimately involved in regulation of cytoskeletal responses to endothelial cell barrier-altering stimuli. Keywords: cytoskeleton, vascular barrier, sphingosine-1-phosphate, thrombin, focal adhesion kinase (FAK), Ena-VASP like protein (EVL), cytoskeletal regulatory protein.

5.
Sci Rep ; 11(1): 17546, 2021 09 02.
Article En | MEDLINE | ID: mdl-34475475

We have shown that both reactive oxygen species (ROS) and paxillin tyrosine phosphorylation regulate LPS-induced human lung endothelial permeability. Mitochondrial ROS (mtROS) is known to increase endothelial cell (EC) permeability which requires dynamic change in mitochondrial morphology, events that are likely to be regulated by paxillin. Here, we investigated the role of paxillin and its tyrosine phosphorylation in regulating LPS-induced mitochondrial dynamics, mtROS production and human lung microvascular EC (HLMVEC) dysfunction. LPS, in a time-dependent manner, induced higher levels of ROS generation in the mitochondria compared to cytoplasm or nucleus. Down-regulation of paxillin expression with siRNA or ecto-expression of paxillin Y31F or Y118F mutant plasmids attenuated LPS-induced mtROS in HLMVECs. Pre-treatment with MitoTEMPO, a scavenger of mtROS, attenuated LPS-induced mtROS, endothelial permeability and VE-cadherin phosphorylation. Further, LPS-induced mitochondrial fission in HLMVECs was attenuated by both a paxillin siRNA, and paxillin Y31F/Y118F mutant. LPS stimulated phosphorylation of dynamin-related protein (DRP1) at S616, which was also attenuated by paxillin siRNA, and paxillinY31/Y118 mutants. Inhibition of DRP1 phosphorylation by P110 attenuated LPS-induced mtROS and endothelial permeability. LPS challenge of HLMVECs enhanced interaction between paxillin, ERK, and DRP1, and inhibition of ERK1/2 activation with PD98059 blocked mitochondrial fission. Taken together, these results suggest a key role for paxillin tyrosine phosphorylation in LPS-induced mitochondrial fission, mtROS generation and EC barrier dysfunction.


Endothelial Cells/metabolism , Mitochondrial Dynamics , Paxillin/metabolism , Reactive Oxygen Species/metabolism , Cell Line , Endothelial Cells/cytology , Humans , Lipopolysaccharides/metabolism , Lung/cytology , Lung/metabolism , Phosphorylation , Tyrosine/metabolism
6.
Eur Respir J ; 57(5)2021 05.
Article En | MEDLINE | ID: mdl-33243842

RATIONALE: The severe acute respiratory syndrome coronavirus 2/coronavirus disease 2019 pandemic has highlighted the serious unmet need for effective therapies that reduce acute respiratory distress syndrome (ARDS) mortality. We explored whether extracellular nicotinamide phosphoribosyltransferase (eNAMPT), a ligand for Toll-like receptor (TLR)4 and a master regulator of innate immunity and inflammation, is a potential ARDS therapeutic target. METHODS: Wild-type C57BL/6J or endothelial cell (EC)-cNAMPT -/- knockout mice (targeted EC NAMPT deletion) were exposed to either a lipopolysaccharide (LPS)-induced ("one-hit") or a combined LPS/ventilator ("two-hit")-induced acute inflammatory lung injury model. A NAMPT-specific monoclonal antibody (mAb) imaging probe (99mTc-ProNamptor) was used to detect NAMPT expression in lung tissues. Either an eNAMPT-neutralising goat polyclonal antibody (pAb) or a humanised monoclonal antibody (ALT-100 mAb) were used in vitro and in vivo. RESULTS: Immunohistochemical, biochemical and imaging studies validated time-dependent increases in NAMPT lung tissue expression in both pre-clinical ARDS models. Intravenous delivery of either eNAMPT-neutralising pAb or mAb significantly attenuated inflammatory lung injury (haematoxylin and eosin staining, bronchoalveolar lavage (BAL) protein, BAL polymorphonuclear cells, plasma interleukin-6) in both pre-clinical models. In vitro human lung EC studies demonstrated eNAMPT-neutralising antibodies (pAb, mAb) to strongly abrogate eNAMPT-induced TLR4 pathway activation and EC barrier disruption. In vivo studies in wild-type and EC-cNAMPT -/- mice confirmed a highly significant contribution of EC-derived NAMPT to the severity of inflammatory lung injury in both pre-clinical ARDS models. CONCLUSIONS: These findings highlight both the role of EC-derived eNAMPT and the potential for biologic targeting of the eNAMPT/TLR4 inflammatory pathway. In combination with predictive eNAMPT biomarker and NAMPT genotyping assays, this offers the opportunity to identify high-risk ARDS subjects for delivery of personalised medicine.


Acute Lung Injury , COVID-19 , Animals , Antibodies, Monoclonal , Humans , Mice , Mice, Inbred C57BL , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 115(44): E10352-E10361, 2018 10 30.
Article En | MEDLINE | ID: mdl-30309964

NRF2 regulates cellular redox homeostasis, metabolic balance, and proteostasis by forming a dimer with small musculoaponeurotic fibrosarcoma proteins (sMAFs) and binding to antioxidant response elements (AREs) to activate target gene transcription. In contrast, NRF2-ARE-dependent transcriptional repression is unreported. Here, we describe NRF2-mediated gene repression via a specific seven-nucleotide sequence flanking the ARE, which we term the NRF2-replication protein A1 (RPA1) element (NRE). Mechanistically, RPA1 competes with sMAF for NRF2 binding, followed by interaction of NRF2-RPA1 with the ARE-NRE and eduction of promoter activity. Genome-wide in silico and RNA-seq analyses revealed this NRF2-RPA1-ARE-NRE complex mediates negative regulation of many genes with diverse functions, indicating that this mechanism is a fundamental cellular process. Notably, repression of MYLK, which encodes the nonmuscle myosin light chain kinase, by the NRF2-RPA1-ARE-NRE complex disrupts vascular integrity in preclinical inflammatory lung injury models, illustrating the translational significance of NRF2-mediated transcriptional repression. Our findings reveal a gene-suppressive function of NRF2 and a subset of negatively regulated NRF2 target genes, underscoring the broad impact of NRF2 in physiological and pathological settings.


NF-E2-Related Factor 2/genetics , Replication Protein A/genetics , Repressor Proteins/genetics , Transcription, Genetic/genetics , Transcriptional Activation/genetics , A549 Cells , Animals , Cell Line , Cell Line, Tumor , DNA-Binding Proteins/genetics , Genome/genetics , Humans , Mice , Promoter Regions, Genetic/genetics , Response Elements/genetics
8.
Pulm Circ ; 8(2): 2045894018764171, 2018.
Article En | MEDLINE | ID: mdl-29480069

Sphingosine 1-phosphate (S1P) is a potent bioactive endogenous lipid that signals a rearrangement of the actin cytoskeleton via the regulation of non-muscle myosin light chain kinase isoform (nmMLCK). S1P induces critical nmMLCK Y464 and Y471 phosphorylation resulting in translocation of nmMLCK to the periphery where spatially-directed increases in myosin light chain (MLC) phosphorylation and tension result in lamellipodia protrusion, increased cell-cell adhesion, and enhanced vascular barrier integrity. MYLK, the gene encoding nmMLCK, is a known candidate gene in lung inflammatory diseases, with coding genetic variants (Pro21His, Ser147Pro, Val261Ala) that confer risk for inflammatory lung injury and influence disease severity. The functional mechanisms by which these MYLK coding single nucleotide polymorphisms (SNPs) affect biologic processes to increase disease risk and severity remain elusive. In the current study, we utilized quantifiable cell immunofluorescence assays to determine the influence of MYLK coding SNPs on S1P-mediated nmMLCK phosphorylation and translocation to the human lung endothelial cell (EC) periphery . These disease-associated MYLK variants result in reduced levels of S1P-induced Y464 phosphorylation, a key site for nmMLCK enzymatic regulation and activation. Reduced Y464 phosphorylation resulted in attenuated nmMLCK protein translocation to the cell periphery. We further conducted EC kymographic assays which confirmed that lamellipodial protrusion in response to S1P challenge was retarded by expression of a MYLK transgene harboring the three MYLK coding SNPs. These data suggest that ARDS/severe asthma-associated MYLK SNPs functionally influence vascular barrier-regulatory cytoskeletal responses via direct alterations in the levels of nmMLCK tyrosine phosphorylation, spatial localization, and lamellipodial protrusions.

9.
Am J Respir Cell Mol Biol ; 58(5): 604-613, 2018 05.
Article En | MEDLINE | ID: mdl-29077485

Profound lung vascular permeability is a cardinal feature of acute respiratory distress syndrome (ARDS) and ventilator-induced lung injury (VILI), two syndromes known to centrally involve the nonmuscle isoform of myosin light chain kinase (nmMLCK) in vascular barrier dysregulation. Two main splice variants, nmMLCK1 and nmMLCK2, are well represented in human lung endothelial cells and encoded by MYLK, and they differ only in the presence of exon 11 in nmMLCK1, which contains critical phosphorylation sites (Y464 and Y471) that influence nmMLCK enzymatic activity, cellular translocation, and localization in response to vascular agonists. We recently demonstrated the functional role of SNPs in altering MYLK splicing, and in the present study we sought to identify the role of splicing factors in the generation of nmMLCK1 and nmMLCK2 spliced variants. Using bioinformatic in silico approaches, we identified a putative binding site for heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a recognized splicing factor. We verified hnRNPA1 binding to MYLK by gel shift analyses and that hnRNPA1 gene and protein expression is upregulated in mouse lungs obtained from preclinical models of ARDS and VILI and in human endothelial cells exposed to 18% cyclic stretch, a model that reproduces the excessive mechanical stress observed in VILI. Using an MYLK minigene approach, we established a direct role of hnRNPA1 in MYLK splicing and in the context of 18% cyclic stretch. In summary, these data indicate an important regulatory role for hnRNPA1 in MYLK splicing, and they increase understanding of MYLK splicing in the regulation of lung vascular integrity during acute lung inflammation and excessive mechanical stress, such as that observed in ARDS and VILI.


Alternative Splicing , Calcium-Binding Proteins/metabolism , Endothelial Cells/enzymology , Heterogeneous Nuclear Ribonucleoprotein A1/metabolism , Lung/blood supply , Myosin-Light-Chain Kinase/metabolism , Respiratory Distress Syndrome/enzymology , Ventilator-Induced Lung Injury/enzymology , Animals , Binding Sites , Calcium-Binding Proteins/genetics , Capillary Permeability , Disease Models, Animal , Electric Impedance , Exons , HEK293 Cells , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Humans , Introns , Mechanotransduction, Cellular , Mice , Myosin-Light-Chain Kinase/genetics , Protein Binding , Pulmonary Stretch Receptors/metabolism , Respiratory Distress Syndrome/genetics , Respiratory Distress Syndrome/physiopathology , Ventilator-Induced Lung Injury/genetics , Ventilator-Induced Lung Injury/physiopathology
10.
Am J Respir Cell Mol Biol ; 56(1): 29-37, 2017 01.
Article En | MEDLINE | ID: mdl-27529643

The nonmuscle (nm) myosin light-chain kinase isoform (MLCK), encoded by the MYLK gene, is a vital participant in regulating vascular barrier responses to mechanical and inflammatory stimuli. We determined that MYLK is alternatively spliced, yielding functionally distinct nmMLCK splice variants including nmMLCK2, a splice variant highly expressed in vascular endothelial cells (EC) and associated with reduced EC barrier integrity. We demonstrated previously that the nmMLCK2 variant lacks exon 11, which encodes a key regulatory region containing two differentially phosphorylated tyrosine residues (Y464 and Y471) that influence vascular barrier function during inflammation. In this study, we used minigene constructs and RT-PCR to interrogate biophysical factors (mechanical stress) and genetic variants (MYLK single-nucleotide polymorphisms [SNPs]) that are potentially involved in regulating MYLK alternative splicing and nmMLCK2 generation. Human lung EC exposed to pathologic mechanical stress (18% cyclic stretch) produced increased nmMLCK2 expression relative to levels of nmMLCK1 with alternative splicing significantly influenced by MYLK SNPs rs77323602 and rs147245669. In silico analyses predicted that these variants would alter exon 11 donor and acceptor sites for alternative splicing, computational predictions that were confirmed by minigene studies. The introduction of rs77323602 favored wild-type nmMLCK expression, whereas rs147245669 favored alternative splicing and deletion of exon 11, yielding increased nmMLCK2 expression. Finally, lymphoblastoid cell lines selectively harboring these MYLK SNPs (rs77323602 and rs147245669) directly validated SNP-specific effects on MYLK alternative splicing and nmMLCK2 generation. Together, these studies demonstrate that mechanical stress and MYLK SNPs regulate MYLK alternative splicing and generation of a splice variant, nmMLCK2, that contributes to the severity of inflammatory injury.


Alternative Splicing/genetics , Myosin-Light-Chain Kinase/genetics , Polymorphism, Single Nucleotide/genetics , Stress, Mechanical , Base Sequence , Computational Biology , Computer Simulation , Consensus Sequence/genetics , Exons/genetics , HEK293 Cells , Humans , Lymphocytes/metabolism , RNA Splice Sites/genetics , Reproducibility of Results
11.
Clin Dermatol ; 31(2): 166-78, 2013.
Article En | MEDLINE | ID: mdl-23438380

Melanocyte stem cells differ greatly from melanoma stem cells; the former provide pigmented cells during normal tissue homeostasis and repair, and the latter play an active role in a lethal form of cancer. These 2 cell types share several features and can be studied by similar methods. Aspects held in common by both melanocyte stem cells and melanoma stem cells include their expression of shared biochemical markers, a system of similar molecular signals necessary for their maintenance, and a requirement for an ideal niche microenvironment for providing these factors. This review provides a perspective of both these cell types and discusses potential models of stem cell growth and propagation. Recent findings provide a strong foundation for the development of new therapeutics directed at isolating and manipulating melanocyte stem cells for tissue engineering or at targeting and eradicating melanoma specifically, while sparing nontumor cells.


Melanocytes/pathology , Melanoma/pathology , Skin Neoplasms/pathology , Stem Cells/pathology , Cell Differentiation , Humans , Melanocytes/metabolism , Melanoma/metabolism , Models, Biological , Skin Neoplasms/metabolism , Stem Cells/metabolism , Tissue Engineering/methods
12.
Mol Cancer Res ; 10(8): 1065-76, 2012 Aug.
Article En | MEDLINE | ID: mdl-22679108

GSK-3 is a serine/threonine kinase involved in a diverse range of cellular processes. GSK-3 exists in two isoforms, GSK-3α and GSK-3ß, which possess some functional redundancy but also play distinct roles depending on developmental and cellular context. In this article, we found that GSK-3 actively promoted cell growth and survival in melanoma cells, and blocking this activity with small-molecule inhibitor SB216763 or gene-specific siRNA decreased proliferation, increased apoptosis, and altered cellular morphology. These alterations coincided with loss of PAX3, a transcription factor implicated in proliferation, survival, and migration of developing melanoblasts. We further found that PAX3 directly interacted with and was phosphorylated in vitro on a number of residues by GSK-3ß. In melanoma cells, direct inhibition of PAX3 lead to cellular changes that paralleled the response to GSK-3 inhibition. Maintenance of PAX3 expression protected melanoma cells from the anti-tumor effects of SB216763. These data support a model wherein GSK-3 regulates proliferation and morphology of melanoma through phosphorylation and increased levels of PAX3.


Glycogen Synthase Kinase 3 , Melanoma , Paired Box Transcription Factors , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glycogen Synthase Kinase 3/antagonists & inhibitors , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolism , Humans , Indoles/pharmacology , Maleimides/pharmacology , Melanoma/genetics , Melanoma/metabolism , PAX3 Transcription Factor , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , RNA Interference , Signal Transduction
13.
Pigment Cell Melanoma Res ; 23(2): 225-37, 2010 Apr.
Article En | MEDLINE | ID: mdl-20067553

Melanoma is a cancer with a poorly understood molecular pathobiology. We find the transcription factors PAX3, SOX10, MITF, and the tyrosine kinase receptor MET expressed in melanoma cell lines and primary tumors. Analysis for MET expression in primary tumor specimens showed 27/40 (68%) of the samples displayed an increased expression of MET, and this expression was highly correlated with parallel expression of PAX3, SOX10, and MITF. PAX3 and MITF bind to elements in the MET promoter independently, without evidence of either synergistic activation or inhibition. SOX10 does not directly activate the MET gene alone, but can synergistically activate MET expression with either PAX3 or MITF. In melanoma cells, there was evidence of two pathways for PAX3 mediated MET induction: (i) direct activation of the gene, and (ii) indirect regulation through MITF. SK-MEL23 melanoma cells have both of these pathways intact, while SK-MEL28 melanoma cells only have the first pathway. In summary, we find that PAX3, SOX10 and MITF play an active role in melanoma cells by regulating the MET gene. In consequence, MET promotes the melanoma cancer phenotype by promoting migration, invasion, resistance to apoptosis, and tumor cell growth.


Gene Expression Regulation, Neoplastic , Melanoma/metabolism , Paired Box Transcription Factors/metabolism , Proto-Oncogene Proteins c-met/biosynthesis , SOXE Transcription Factors/metabolism , Apoptosis , Cell Line, Tumor , Disease Progression , Humans , PAX3 Transcription Factor , Paired Box Transcription Factors/biosynthesis , Proto-Oncogene Proteins c-met/metabolism , RNA/drug effects , RNA, Small Interfering/pharmacology , SOXE Transcription Factors/biosynthesis
14.
J Biol Chem ; 284(40): 27524-32, 2009 Oct 02.
Article En | MEDLINE | ID: mdl-19651775

Tumors of the exocrine pancreas have a poor prognosis. Several proteins are overexpressed in this cancer type, including the MET tyrosine kinase receptor and the transcription factor PAX6. In this report, we find that PAX6(5a), an alternately spliced variant form of PAX6, is expressed in pancreatic carcinoma cell lines at higher levels than the canonical PAX6 protein. Both protein forms of PAX6 bind directly to an enhancer element in the MET promoter and activate the expression of the MET gene. In addition, inhibition of PAX6 transcripts leads to a decline in cell growth and survival, differentiation, and a concurrent reduction of MET protein expression. These data support a model for a neoplastic pathway, where expression of a transcription factor from development activates the MET receptor, a protein that has been directly linked to protumorigenic processes of resisting apoptosis, tumor growth, invasion, and metastasis.


Disease Progression , Eye Proteins/genetics , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/genetics , Receptors, Growth Factor/genetics , Repressor Proteins/genetics , Transcriptional Activation , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Animals , Apoptosis/genetics , Base Sequence , Cell Line, Tumor , Genes, Reporter , Humans , Mice , Molecular Sequence Data , Mutation , Neoplasm Metastasis/genetics , PAX6 Transcription Factor , Paired Box Transcription Factors/deficiency , Phenotype , Proto-Oncogene Proteins c-met
15.
Cell Metab ; 8(5): 411-24, 2008 Nov.
Article En | MEDLINE | ID: mdl-19046572

Mammalian target of rapamycin (mTOR) is a central controller of cell growth. mTOR assembles into two distinct multiprotein complexes called mTOR complex 1 (mTORC1) and mTORC2. Here we show that the mTORC1 component raptor is critical for muscle function and prolonged survival. In contrast, muscles lacking the mTORC2 component rictor are indistinguishable from wild-type controls. Raptor-deficient muscles become progressively dystrophic, are impaired in their oxidative capacity, and contain increased glycogen stores, but they express structural components indicative of oxidative muscle fibers. Biochemical analysis indicates that these changes are probably due to loss of activation of direct downstream targets of mTORC1, downregulation of genes involved in mitochondrial biogenesis, including PGC1alpha, and hyperactivation of PKB/Akt. Finally, we show that activation of PKB/Akt does not require mTORC2. Together, these results demonstrate that muscle mTORC1 has an unexpected role in the regulation of the metabolic properties and that its function is essential for life.


Carrier Proteins/physiology , Mitochondria/physiology , Muscle, Skeletal/metabolism , Muscular Dystrophies/metabolism , Transcription Factors/physiology , Adaptor Proteins, Signal Transducing , Animals , Carrier Proteins/genetics , Enzyme Activation , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Multiprotein Complexes , Muscle, Skeletal/pathology , Muscular Dystrophies/pathology , Oncogene Protein v-akt/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation , Proteins , Proto-Oncogene Proteins c-akt/metabolism , Rapamycin-Insensitive Companion of mTOR Protein , Regulatory-Associated Protein of mTOR , TOR Serine-Threonine Kinases , Trans-Activators/metabolism , Transcription Factors/genetics
16.
Mol Carcinog ; 47(2): 148-56, 2008 Feb.
Article En | MEDLINE | ID: mdl-17849422

Tumors of the exocrine pancreas are a major cause of cancer death and have among the poorest prognosis of any malignancy. Following the "cancer stem cell hypothesis," where tumors are believed to originate in tissue specific stem cells, we screened primary ductal pancreatic carcinomas and cell lines for the expression of possible stem cell factors. We find 32/46 (70%) of primary tumors and 9/10 (90%) of cell lines express PAX6. PAX6 is a transcription factor expressed throughout the pancreatic bud during embryogenesis but not in the mature exocrine pancreas. PAX proteins have also been implicated in maintaining stem cells in a committed but undifferentiated state but a role for PAX proteins in putative pancreas stem cells is not known. We induced a pancreatic carcinoma cell line, Panc-1, to differentiate by transfecting wild-type p53 and treating the cells with differentiation agents gastrin or butyrate. This treatment induces cells to terminally differentiate into a growth-arrested cell with neurite-like processes, express the terminal differentiation marker somatostatin and downregulate PAX6. This phenotype can be replicated by directly inhibiting PAX6 expression. These data support a model where PAX proteins are aberrantly expressed in tumors and downregulation leads to differentiation.


Adenocarcinoma/genetics , Cell Differentiation/genetics , Eye Proteins/genetics , Homeodomain Proteins/genetics , Paired Box Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Repressor Proteins/genetics , 3T3 Cells , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Animals , Base Sequence , Cell Division , Cell Line, Tumor , DNA Primers , Mice , PAX6 Transcription Factor , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Rats , Tumor Suppressor Protein p53/metabolism
17.
Matrix Biol ; 23(8): 507-13, 2005 Jan.
Article En | MEDLINE | ID: mdl-15694127

Agrin is a key organizer for postsynaptic differentiation at the neuromuscular junction (NMJ). This activity requires the binding of agrin to the synaptic basal lamina via its N-terminal (NtA) domain. It has been suggested that this binding is mediated by conserved amino acids in the gamma 1 chain of laminin. Here, we report the crystal structure of chicken NtA expressed in eukaryotic HEK293 cells. In contrast to the previously published structure [Stetefeld, J., Jenny, M., Schulthess, T., Landwehr, R., Schumacher, B., Frank, S., Ruegg, M.A., Engel, J., Kammerer, R.A., 2001. The laminin-binding domain of agrin is structurally related to N-TIMP-1. Nat. Struct. Biol., 8, 705-709.], which was derived from the NtA domain expressed in E. coli, the new data show that the N-terminal tail region (amino acid residues Asn1-Arg5) is highly structured. Moreover, the disulfide bridge between Cys2 and Cys74 was also present. In addition, we show that the binding of NtA requires the gamma 1 chain of laminin and is not greatly affected by the composition of beta chains. These results confirm a model of the NtA-laminin complex where conserved amino acids in the gamma 1 chain are prerequisite for the binding to agrin and they further emphasize that the source of protein can be critical in structure determination.


Laminin/chemistry , Agrin/chemistry , Animals , Cell Differentiation , Cell Line , Chickens , Cysteine/chemistry , Disulfides , Dose-Response Relationship, Drug , Escherichia coli/metabolism , Humans , Mice , Models, Molecular , Neuromuscular Junction/cytology , Protein Conformation , Protein Isoforms , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Recombinant Proteins/chemistry
18.
EMBO J ; 22(3): 529-36, 2003 Feb 03.
Article En | MEDLINE | ID: mdl-12554653

Agrin is a key organizer of acetylcholine receptor (AChR) clustering at the neuromuscular junction. The binding of agrin to laminin is required for its localization to synaptic basal lamina and other basement membranes. The high-affinity interaction with the coiled-coil domain of laminin is mediated by the N-terminal domain of agrin. We have adopted a structurally guided site-directed mutagenesis approach to map the laminin-binding site of NtA. Mutations of L117 and V124 in the C-terminal helix 3 showed that they are crucial for binding. Both residues are located in helix 3 and face the groove between the beta-barrel and the C-terminal helical segment of NtA. Remarkably, the distance between both residues matches a heptad repeat distance of two aliphatic residues which are solvent exposed in the coiled-coil domain of laminin. A lower but significant contribution originates from R43 and a charged cluster (E23, E24 and R40) at the open face of the beta-barrel structure. We propose that surface-exposed, conserved residues of the laminin gamma1 chain interact with NtA via hydrophobic and ionic interactions.


Agrin/chemistry , Agrin/metabolism , Laminin/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Agrin/genetics , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Epitopes/chemistry , Epitopes/metabolism , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Neuromuscular Junction/metabolism , Protein Binding , Sequence Alignment
...