Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
Mol Neurobiol ; 60(4): 2150-2173, 2023 Apr.
Article En | MEDLINE | ID: mdl-36609826

Parkinson's disease (PD) represents the most common neurodegenerative movement disorder. We recently identified 16 novel genes associated with PD. In this study, we focused the attention on the common and rare variants identified in the lysosomal K+ channel TMEM175. The study includes a detailed clinical and genetic analysis of 400 cases and 300 controls. Molecular studies were performed on patient-derived fibroblasts. The functional properties of the mutant channels were assessed by patch-clamp technique and co-immunoprecipitation. We have found that TMEM175 was highly expressed in dopaminergic neurons of the substantia nigra pars compacta and in microglia of the cerebral cortex of the human brain. Four common variants were associated with PD, including two novel variants rs2290402 (c.-10C > T) and rs80114247 (c.T1022C, p.M341T), located in the Kozak consensus sequence and TM3II domain, respectively. We also disclosed 13 novel highly penetrant detrimental mutations in the TMEM175 gene associated with PD. At least nine of these mutations (p.R35C, p. R183X, p.A270T, p.P308L, p.S348L, p. L405V, p.R414W, p.P427fs, p.R481W) may be sufficient to cause the disease, and the presence of mutations of other genes correlated with an earlier disease onset. In vitro functional analysis of the ion channel encoded by the mutated TMEM175 gene revealed a loss of the K+ conductance and a reduced channel affinity for Akt. Moreover, we observed an impaired autophagic/lysosomal proteolytic flux and an increase expression of unfolded protein response markers in patient-derived fibroblasts. These data suggest that mutations in TMEM175 gene may contribute to the pathophysiology of PD.


Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/metabolism , Ion Channels/metabolism , Lysosomes/metabolism , Dopaminergic Neurons/metabolism , Potassium Channels/metabolism
2.
Cells ; 11(23)2022 Dec 03.
Article En | MEDLINE | ID: mdl-36497172

Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.


Cognitive Dysfunction , Spinocerebellar Ataxias , Mice , Animals , Spinocerebellar Ataxias/drug therapy , Spinocerebellar Ataxias/metabolism , Ataxins , Mice, Transgenic , Disease Models, Animal
3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35887364

Breakthrough cancer pain (BTcP) refers to a sudden and transient exacerbation of pain, which develops in patients treated with opioid analgesics. Fast-onset analgesia is required for the treatment of BTcP. Light-activated drugs offer a novel potential strategy for the rapid control of pain without the typical adverse effects of systemic analgesic drugs. mGlu5 metabotropic glutamate receptor antagonists display potent analgesic activity, and light-induced activation of one of these compounds (JF-NP-26) in the thalamus was found to induce analgesia in models of inflammatory and neuropathic pain. We used an established mouse model of BTcP based on the injection of cancer cells into the femur, followed, 16 days later, by systemic administration of morphine. BTcP was induced by injection of endothelin-1 (ET-1) into the tumor, 20 min after morphine administration. Mice were implanted with optic fibers delivering light in the visible spectrum (405 nm) in the thalamus or prelimbic cortex to locally activate systemically injected JF-NP-26. Light delivery in the thalamus caused rapid and substantial analgesia, and this effect was specific because light delivery in the prelimbic cortex did not relieve BTcP. This finding lays the groundwork for the use of optopharmacology in the treatment of BTcP.


Analgesia , Breakthrough Pain , Cancer Pain , Neoplasms , Receptors, Metabotropic Glutamate , Analgesia/adverse effects , Analgesics/pharmacology , Analgesics/therapeutic use , Analgesics, Opioid/adverse effects , Animals , Breakthrough Pain/drug therapy , Breakthrough Pain/etiology , Cancer Pain/drug therapy , Cancer Pain/etiology , Disease Models, Animal , Mice , Morphine/pharmacology , Morphine/therapeutic use , Neoplasms/drug therapy , Pain Measurement , Thalamus
4.
Eur J Nucl Med Mol Imaging ; 49(13): 4338-4357, 2022 11.
Article En | MEDLINE | ID: mdl-35852558

PURPOSE: Modern neuroimaging lacks the tools necessary for whole-brain, anatomically dense neuronal damage screening. An ideal approach would include unbiased histopathologic identification of aging and neurodegenerative disease. METHODS: We report the postmortem application of multiscale X-ray phase-contrast computed tomography (X-PCI-CT) for the label-free and dissection-free organ-level to intracellular-level 3D visualization of distinct single neurons and glia. In deep neuronal populations in the brain of aged wild-type and of 3xTgAD mice (a triply-transgenic model of Alzheimer's disease), we quantified intracellular hyperdensity, a manifestation of aging or neurodegeneration. RESULTS: In 3xTgAD mice, the observed hyperdensity was identified as amyloid-ß and hyper-phosphorylated tau protein deposits with calcium and iron involvement, by correlating the X-PCI-CT data to immunohistochemistry, X-ray fluorescence microscopy, high-field MRI, and TEM. As a proof-of-concept, X-PCI-CT was used to analyze hippocampal and cortical brain regions of 3xTgAD mice treated with LY379268, selective agonist of group II metabotropic glutamate receptors (mGlu2/3 receptors). Chronic pharmacologic activation of mGlu2/3 receptors significantly reduced the hyperdensity particle load in the ventral cortical regions of 3xTgAD mice, suggesting a neuroprotective effect with locoregional efficacy. CONCLUSIONS: This multiscale micro-to-nano 3D imaging method based on X-PCI-CT enabled identification and quantification of cellular and sub-cellular aging and neurodegeneration in deep neuronal and glial cell populations in a transgenic model of Alzheimer's disease. This approach quantified the localized and intracellular neuroprotective effects of pharmacological activation of mGlu2/3 receptors.


Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Receptors, Metabotropic Glutamate , Animals , Mice , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Calcium , Cellular Senescence , Iron , Mice, Transgenic , Neuroimaging , Neuroprotective Agents/pharmacology , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism , tau Proteins/metabolism , X-Rays
5.
Front Mol Neurosci ; 15: 892870, 2022.
Article En | MEDLINE | ID: mdl-35721314

Cinnabarinic acid (CA) is a trace kynurenine metabolite, which activates both type-4 metabotropic glutamate (mGlu4) and arylic hydrocarbon (Ah) receptors. We examined the action of CA in models of inflammatory and neuropathic pain moving from the evidence that mGlu4 receptors are involved in the regulation of pain thresholds. Systemic administration of low doses of CA (0.125 and 0.25 mg/kg, i.p.) reduced nocifensive behaviour in the second phase of the formalin test. CA-induced analgesia was abrogated in mGlu4 receptor knockout mice, but was unaffected by treatment with the Ah receptor antagonist, CH223191 (1 mg/Kg, s.c.). Acute injection of low doses of CA (0.25 mg/kg, i.p.) also caused analgesia in mice subjected to Chronic Constriction Injury (CCI) of the sciatic nerve. Electrophysiological recording showed no effect of CA on spinal cord nociceptive neurons and a trend to a lowering effect on the frequency and duration of excitation of the rostral ventromedial medulla (RVM) ON cells in CCI mice. However, local application of CH223191 or the group-III mGlu receptor antagonist, MSOP disclosed a substantial lowering and enhancing effect of CA on both populations of neurons, respectively. When repeatedly administered to CCI mice, CA retained the analgesic activity only when combined with CH223191. Repeated administration of CA plus CH223191 restrained the activity of both spinal nociceptive neurons and RVM ON cells, in full agreement with the analgesic activity. These findings suggest that CA is involved in the regulation of pain transmission, and its overall effect depends on the recruitment of mGlu4 and Ah receptors.

6.
J Neurosci ; 42(14): 3037-3048, 2022 04 06.
Article En | MEDLINE | ID: mdl-35193928

Chronic pain is sustained by a maladaptive form of neuronal plasticity occurring in all stations of the pain neuraxis, including cortical regions of the pain matrix. We report that chronic inflammatory pain induced by unilateral injection of complete Freund's adjuvant (CFA) in the hindpaw of male mice was associated with a progressive build-up of perineuronal nets (PNNs) in the contralateral somatosensory cortex (SSC), medial prefrontal cortex (mPFC), and reticular thalamic nucleus. In the SSC, the density of PNNs labeled by Wisteria floribunda agglutinin (WFA) was increased at both 3 and 7 d following CFA injection, but only after 7 d in the mPFC. The number of parvalbumin (PV)-positive interneurons enwrapped by WFA+/PNNs was also increased in all three brain regions of mice injected with CFA. Remarkably, PNN degradation induced by intracortical infusion of chondroitinase-ABC significantly reduced mechanical and thermal pain, and also reversed the increased frequency of IPSCs recorded in layer 5 pyramidal neurons of the contralateral SSC in CFA-injected mice. These findings suggest a possible relationship between cortical PNNs and nociceptive sensitization, and support the hypothesis that PNNs maintain their plasticity in the adult life and regulate cortical responses to sensory inputs.SIGNIFICANCE STATEMENT The brain extracellular matrix not only provides structural support, but also regulates synapse formation and function, and modulates neuronal excitability. We found that chronic inflammatory pain in mice enhances the density of perineuronal nets (PNNs) in the somatosensory cortex and medial prefrontal cortex. Remarkably, enzymatic degradation of PNNs in the somatosensory cortex caused analgesia and reversed alterations of inhibitory synaptic transmission associated with chronic pain. These findings disclose a novel mechanism of nociceptive sensitization and support a role for PNNs in mechanisms of neuronal plasticity in the adult brain.


Chronic Pain , Somatosensory Cortex , Animals , Chronic Pain/chemically induced , Chronic Pain/metabolism , Extracellular Matrix/metabolism , Interneurons/metabolism , Male , Mice , Parvalbumins/metabolism , Somatosensory Cortex/metabolism
7.
Eur J Neurosci ; 54(9): 7109-7124, 2021 11.
Article En | MEDLINE | ID: mdl-34655118

Pilots and crew of domestic flights are exposed to transient periods of mild reductions of partial pressure of inspired oxygen each day, and this might have functional consequence on their performance in the long range. Here, we exposed mice to mild reductions of oxygen exposure (ROE) four times per day for 21 days by lowering oxygen partial pressure to levels corresponding to an altitude of about 2300 m, which is the quote of pressurization of the air cabin. Four groups of mice were studied: unstressed or stressed mice exposed to ROE or normoxic conditions. Mice were exposed to chronic unpredictable stress (CUS) for 28 days, and ROE was delivered in the last 21 days of CUS. In normoxic mice, CUS caused anhedonia in the sucrose preference test, anxiety-like behaviour in the open field test, learning impairment in the Morris water maze, reduced hippocampal neurogenesis, increased serum corticosterone levels and increased expression of depression-related genes (Pclo, Mthfr and Grm5) in the hippocampus. All these changes were reversed by ROE, which had little or no effect in unstressed mice. These findings suggest that ROE simulating air cabin conditions of domestic flights may enhance resilience to stress improving mood, anxiety and learning ability.


Hippocampus , Oxygen , Resilience, Psychological , Stress, Psychological/psychology , Aircraft , Animals , Anxiety , Depression , Mice , Partial Pressure
8.
Front Neurol ; 12: 668877, 2021.
Article En | MEDLINE | ID: mdl-34220677

Backgroud: Type-3 metabotropic glutamate (mGlu3) receptors are found in both neurons and glial cells and regulate synaptic transmission, astrocyte function, and microglial reactivity. Here we show that the genetic deletion of mGlu3 receptors amplifies ischemic brain damage and associated neuroinflammation in adult mice. An increased infarct size was observed in mGlu3-/- mice of both CD1 and C57Black strains 24 h following a permanent occlusion of the middle cerebral artery (MCA) as compared to their respective wild-type (mGlu3+/+ mice) counterparts. Increases in the expression of selected pro-inflammatory genes including those encoding interleukin-1ß, type-2 cycloxygenase, tumor necrosis factor-α, CD86, and interleukin-6 were more prominent in the peri-infarct region of mGlu3-/- mice. In contrast, the expression of two genes associated with the anti-inflammatory phenotype of microglia (those encoding the mannose-1-phosphate receptor and the α-subunit of interleukin-4 receptor) and the gene encoding the neuroprotective factor, glial cell line-derived neurotrophic factor, was enhanced in the peri-infarct region of wild-type mice, but not mGlu3-/- mice, following MCA occlusion. In C57Black mice, the genetic deletion of mGlu3 receptors worsened the defect in the paw placement test as assessed in the contralateral forepaw at short times (4 h) following MCA occlusion. These findings suggest that mGlu3 receptors are protective against ischemic brain damage and support the way to the use of selective mGlu3 receptor agonists or positive allosteric modulators in experimental animal models of ischemic stroke.

9.
Transl Psychiatry ; 11(1): 109, 2021 02 18.
Article En | MEDLINE | ID: mdl-33597513

mGlu5 metabotropic glutamate receptors are highly functional in the early postnatal life, and regulate developmental plasticity of parvalbumin-positive (PV+) interneurons in the cerebral cortex. PV+ cells are enwrapped by perineuronal nets (PNNs) at the closure of critical windows of cortical plasticity. Changes in PNNs have been associated with neurodevelopmental disorders. We found that the number of Wisteria Fluoribunda Agglutinin (WFA)+ PNNs and the density of WFA+/PV+ cells were largely increased in the somatosensory cortex of mGlu5-/- mice at PND16. An increased WFA+ PNN density was also observed after pharmacological blockade of mGlu5 receptors in the first two postnatal weeks. The number of WFA+ PNNs in mGlu5-/- mice was close to a plateau at PND16, whereas continued to increase in wild-type mice, and there was no difference between the two genotypes at PND21 and PND60. mGlu5-/- mice at PND16 showed increases in the transcripts of genes involved in PNN formation and a reduced expression and activity of type-9 matrix metalloproteinase in the somatosensory cortex suggesting that mGlu5 receptors control both PNN formation and degradation. Finally, unilateral whisker stimulation from PND9 to PND16 enhanced WFA+ PNN density in the contralateral somatosensory cortex only in mGlu5+/+ mice, whereas whisker trimming from PND9 to PND16 reduced WFA+ PNN density exclusively in mGlu5-/- mice, suggesting that mGlu5 receptors shape the PNN response to sensory experience. These findings disclose a novel undescribed mechanism of PNN regulation, and lay the groundwork for the study of mGlu5 receptors and PNNs in neurodevelopmental disorders.


Receptors, Metabotropic Glutamate , Somatosensory Cortex , Animals , Extracellular Matrix/metabolism , Interneurons/metabolism , Mice , Parvalbumins/metabolism
10.
Neuropharmacology ; 178: 108240, 2020 11 01.
Article En | MEDLINE | ID: mdl-32768418

Previous studies have shown that injection of the mGlu5 receptor positive allosteric modulator (PAM) VU0360172 into either the thalamus or somatosensory cortex markedly reduces the frequency of spike-and-wave discharges (SWDs) in the WAG/Rij model of absence epilepsy. Here we have investigated the effects of VU0360172 on GABA transport in the thalamus and somatosensory cortex, as possible modes of action underlying the suppression of SWDs. Systemic VU0360172 injections increase GABA uptake in thalamic synaptosomes from epileptic WAG/Rij rats. Consistent with this observation, VU0360172 could also enhance thalamic GAT-1 protein expression, depending on the dosing regimen. This increase in GAT-1 expression was also observed in the thalamus from non-epileptic rats (presymptomatic WAG/Rij and Wistar) and appeared to occur selectively in neurons. The tonic GABAA receptor current present in ventrobasal thalamocortical neurons was significantly reduced by VU0360172 consistent with changes in GAT-1 and GABA uptake. The in vivo effects of VU0360172 (reduction in tonic GABA current and increase in GAT-1 expression) could be reproduced in vitro by treating thalamic slices with VU0360172 for at least 1 h and appeared to be dependent on the activation of PLC. Thus, the effects of VU0360172 do not require an intact thalamocortical circuit. In the somatosensory cortex, VU0360172 reduced GABA uptake but did not cause significant changes in GAT-1 protein levels. These findings reveal a novel mechanism of regulation mediated by mGlu5 receptors, which could underlie the powerful anti-absence effect of mGlu5 receptor enhancers in animal models.


GABA Plasma Membrane Transport Proteins/metabolism , Niacinamide/analogs & derivatives , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/metabolism , Thalamus/metabolism , gamma-Aminobutyric Acid/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , Dose-Response Relationship, Drug , Male , Niacinamide/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic , Rats, Wistar , Receptors, GABA-A/metabolism , Thalamus/drug effects , gamma-Aminobutyric Acid/pharmacology
11.
Schizophr Bull ; 46(6): 1471-1481, 2020 12 01.
Article En | MEDLINE | ID: mdl-32506121

Cinnabarinic acid (CA) is a kynurenine metabolite that activates mGlu4 metabotropic glutamate receptors. Using a highly sensitive ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS-MS) method, we found that CA is present in trace amounts in human brain tissue. CA levels were largely reduced in the prefrontal cortex (PFC) of individuals affected by schizophrenia. This reduction did not correlate with age, sex, duration of the disease, and duration and type of antipsychotic medication and might, therefore, represent a trait of schizophrenia. Interestingly, systemic treatment with low doses of CA (<1 mg/kg, i.p.) showed robust efficacy in several behavioral tests useful to study antipsychotic-like activity in mice and rats and attenuated MK-801-evoked glutamate release. CA failed to display antipsychotic-like activity and inhibit excitatory synaptic transmission in mice lacking mGlu4 receptors. These findings suggest that CA is a potent endogenous antipsychotic-like molecule and reduced CA levels in the PFC might contribute to the pathophysiology of schizophrenia.


Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Electrophysiological Phenomena/drug effects , Kynurenine/metabolism , Oxazines/metabolism , Oxazines/pharmacology , Prefrontal Cortex/metabolism , Receptors, Metabotropic Glutamate , Schizophrenia/drug therapy , Schizophrenia/metabolism , Adult , Animals , Antipsychotic Agents/administration & dosage , Cells, Cultured , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Oxazines/administration & dosage , Rats , Rats, Wistar , Receptors, Metabotropic Glutamate/deficiency , Tissue Banks
13.
FASEB J ; 33(12): 14204-14220, 2019 12.
Article En | MEDLINE | ID: mdl-31665922

Polymorphic variants of the gene encoding for metabotropic glutamate receptor 3 (mGlu3) are linked to schizophrenia. Because abnormalities of cortical GABAergic interneurons lie at the core of the pathophysiology of schizophrenia, we examined whether mGlu3 receptors influence the developmental trajectory of cortical GABAergic transmission in the postnatal life. mGlu3-/- mice showed robust changes in the expression of interneuron-related genes in the prefrontal cortex (PFC), including large reductions in the expression of parvalbumin (PV) and the GluN1 subunit of NMDA receptors. The number of cortical cells enwrapped by perineuronal nets was increased in mGlu3-/- mice, suggesting that mGlu3 receptors shape the temporal window of plasticity of PV+ interneurons. Electrophysiological measurements of GABAA receptor-mediated responses revealed a more depolarized reversal potential of GABA currents in the somata of PFC pyramidal neurons in mGlu3-/- mice at postnatal d 9 associated with a reduced expression of the K+/Cl- symporter. Finally, adult mGlu3-/- mice showed lower power in electroencephalographic rhythms at 1-45 Hz in quiet wakefulness as compared with their wild-type counterparts. These findings suggest that mGlu3 receptors have a strong impact on the development of cortical GABAergic transmission and cortical neural synchronization mechanisms corroborating the concept that genetic variants of mGlu3 receptors may predispose to psychiatric disorders.-Imbriglio, T., Verhaeghe, R., Martinello, K., Pascarelli, M. T., Chece, G., Bucci, D., Notartomaso, S., Quattromani, M., Mascio, G., Scalabrì, F., Simeone, A., Maccari, S., Del Percio, C., Wieloch, T., Fucile, S., Babiloni, C., Battaglia, G., Limatola, C., Nicoletti, F., Cannella, M. Developmental abnormalities in cortical GABAergic system in mice lacking mGlu3 metabotropic glutamate receptors.


Cerebral Cortex/abnormalities , Embryo, Mammalian/abnormalities , GABAergic Neurons/physiology , Receptors, Metabotropic Glutamate/metabolism , Animals , Biomarkers , Cerebral Cortex/metabolism , Female , Gene Expression Regulation , Genes, Homeobox , Immunohistochemistry , Male , Mice , Mice, Knockout , RNA, Messenger , Receptors, Metabotropic Glutamate/genetics
14.
Front Psychiatry ; 10: 49, 2019.
Article En | MEDLINE | ID: mdl-30890967

Metabotropic glutamate (mGlu) receptors are considered as candidate drug targets for the treatment of schizophrenia. These receptors form a family of eight subtypes (mGlu1 to -8), of which mGlu1 and -5 are coupled to Gq/11, and all other subtypes are coupled to Gi/o. Here, we discuss the possibility that selective ligands of individual mGlu receptor subtypes may be effective in controlling the core symptoms of schizophrenia, and, in some cases, may impact mechanisms underlying the progression of the disorder. Recent evidence indicates that activation of mGlu1 receptors inhibits dopamine release in the meso-striatal system. Hence, selective positive allosteric modulators (PAMs) of mGlu1 receptors hold promise for the treatment of positive symptoms of schizophrenia. mGlu5 receptors are widely expressed in the CNS and regulate the activity of cells that are involved in the pathophysiology of schizophrenia, such as cortical GABAergic interneurons and microglial cells. mGlu5 receptor PAMs are under development for the treatment of schizophrenia and cater the potential to act as disease modifiers by restraining neuroinflammation. mGlu2 receptors have attracted considerable interest because they negatively modulate 5-HT2A serotonin receptor signaling in the cerebral cortex. Both mGlu2 receptor PAMs and orthosteric mGlu2/3 receptor agonists display antipsychotic-like activity in animal models, and the latter drugs are inactive in mice lacking mGlu2 receptors. So far, mGlu3 receptors have been left apart as drug targets for schizophrenia. However, activation of mGlu3 receptors boosts mGlu5 receptor signaling, supports neuronal survival, and drives microglial cells toward an antiinflammatory phenotype. This strongly encourages research of mGlu3 receptors in schizophrenia. Finally, preclical studies suggest that mGlu4 receptors might be targeted by novel antipsychotic drugs, whereas studies of mGlu7 and mGlu8 receptors in animal models of psychosis are still at their infancy.

15.
Sci Rep ; 8(1): 13361, 2018 09 06.
Article En | MEDLINE | ID: mdl-30190524

In cerebellar Purkinje cells (PCs) type-1 metabotropic glutamate (mGlu1) receptors play a key role in motor learning and drive the refinement of synaptic innervation during postnatal development. The cognate mGlu5 receptor is absent in mature PCs and shows low expression levels in the adult cerebellar cortex. Here we found that mGlu5 receptors were heavily expressed by PCs in the early postnatal life, when mGlu1α receptors were barely detectable. The developmental decline of mGlu5 receptors coincided with the appearance of mGlu1α receptors in PCs, and both processes were associated with specular changes in CpG methylation in the corresponding gene promoters. It was the mGlu1 receptor that drove the elimination of mGlu5 receptors from PCs, as shown by data obtained with conditional mGlu1α receptor knockout mice and with targeted pharmacological treatments during critical developmental time windows. The suppressing activity of mGlu1 receptors on mGlu5 receptor was maintained in mature PCs, suggesting that expression of mGlu1α and mGlu5 receptors is mutually exclusive in PCs. These findings add complexity to the the finely tuned mechanisms that regulate PC biology during development and in the adult life and lay the groundwork for an in-depth analysis of the role played by mGlu5 receptors in PC maturation.


Down-Regulation , Epigenesis, Genetic , Purkinje Cells/metabolism , Receptors, AMPA/metabolism , Receptors, Kainic Acid/biosynthesis , Synapses/metabolism , Animals , CpG Islands , DNA Methylation , Male , Mice , Mice, Knockout , Purkinje Cells/cytology , Receptors, AMPA/genetics , Receptors, Kainic Acid/genetics , Synapses/genetics
16.
Neuroscience ; 363: 142-149, 2017 Nov 05.
Article En | MEDLINE | ID: mdl-28918254

Neuroprotection is an unmet need in eye disorders characterized by retinal ganglion cell (RGC) death, such as prematurity-induced retinal degeneration, glaucoma, and age-related macular degeneration. In all these disorders excitotoxicity is a prominent component of neuronal damage, but clinical data discourage the development of NMDA receptor antagonists as neuroprotectants. Here, we show that activation of mGlu1 metabotropic glutamate receptors largely contributes to excitotoxic degeneration of RGCs. Mice at postnatal day 9 were challenged with a toxic dose of monosodium glutamate (MSG, 3g/kg), which caused the death of >70% of Brn-3a+ RGCs. Systemic administration of the mGlu1 receptor negative allosteric modulator (NAM), JNJ16259685 (2.5mg/kg, s.c.), was largely protective against MSG-induced RGC death. This treatment did not cause changes in motor behavior in the pups. We also injected MSG to crv4 mice, which lack mGlu1 receptors because of a recessive mutation of the gene encoding the mGlu1 receptor. MSG did not cause retinal degeneration in crv4 mice, whereas it retained its toxic activity in their wild-type littermates. These findings demonstrate that mGlu1 receptors play a key role in excitotoxic degeneration of RGCs, and encourage the study of mGlu1 receptor NAMs in models of retinal neurodegeneration.


Receptors, Metabotropic Glutamate/metabolism , Retinal Degeneration/metabolism , Retinal Ganglion Cells/metabolism , Animals , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Mutant Strains , Neuroprotective Agents/pharmacology , Quinolines/pharmacology , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology
17.
Mol Pain ; 13: 1744806917697009, 2017 01.
Article En | MEDLINE | ID: mdl-28326943

Background L-acetylcarnitine, a drug marketed for the treatment of chronic pain, causes analgesia by epigenetically up-regulating type-2 metabotropic glutamate (mGlu2) receptors in the spinal cord. Because the epigenetic mechanisms are typically long-lasting, we hypothesized that analgesia could outlast the duration of L-acetylcarnitine treatment in models of inflammatory and neuropathic pain. Results A seven-day treatment with L-acetylcarnitine (100 mg/kg, once a day, i.p.) produced an antiallodynic effect in the complete Freund adjuvant mouse model of chronic inflammatory pain. L-Acetylcarnitine-induced analgesia persisted for at least 14 days after drug withdrawal. In contrast, the analgesic effect of pregabalin, amitryptiline, ceftriaxone, and N-acetylcysteine disappeared seven days after drug withdrawal. L-acetylcarnitine treatment enhanced mGlu2/3 receptor protein levels in the dorsal region of the spinal cord. This effect also persisted for two weeks after drug withdrawal and was associated with increased levels of acetylated histone H3 bound to the Grm2 gene promoter in the dorsal root ganglia. A long-lasting analgesic effect of L-acetylcarnitine was also observed in mice subjected to chronic constriction injury of the sciatic nerve. In these animals, a 14-day treatment with pregabalin, amitryptiline, tramadol, or L-acetylcarnitine produced a significant antiallodynic effect, with pregabalin displaying the greatest efficacy. In mice treated with pregabalin, tramadol or L-acetylcarnitine the analgesic effect was still visible 15 days after the end of drug treatment. However, only in mice treated with L-acetylcarnitine analgesia persisted 37 days after drug withdrawal. This effect was associated with an increase in mGlu2/3 receptor protein levels in the dorsal horns of the spinal cord. Conclusions Our findings suggest that L-acetylcarnitine has the unique property to cause a long-lasting analgesic effect that might reduce relapses in patients suffering from chronic pain.


Acetylcarnitine/pharmacology , Acetylcarnitine/therapeutic use , Epigenesis, Genetic/drug effects , Inflammation/drug therapy , Neuralgia/drug therapy , Amitriptyline/therapeutic use , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Chronic Disease , Disease Models, Animal , Freund's Adjuvant/adverse effects , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Inflammation/chemically induced , Male , Mice , Mice, Inbred C57BL , Pain Management , Pregabalin/therapeutic use , Receptors, Metabotropic Glutamate/metabolism , Time Factors , Tramadol/therapeutic use
18.
Neuropharmacology ; 115: 51-59, 2017 03 15.
Article En | MEDLINE | ID: mdl-27498071

The neuronal K+/Cl- symporter, KCC2, shapes synaptic responses mediated by Cl--permeant GABAA receptors. Moving from the evidence that excitatory neurotransmission drives changes in KCC2 expression in cerebellar neurons, we studied the regulation of KCC2 expression by group-I metabotropic glutamate (mGlu) receptors in the cerebellum of adult mice. Mice lacking mGlu5 receptors showed a large reduction in cerebellar KCC2 protein levels and a loss of KCC2 immunoreactivity in Purkinje cells. Similar changes were seen in mice treated with the mGlu5 receptor antagonist, MPEP, whereas treatment with the mGlu5 receptor positive allosteric modulator (PAM), VU0360172, increased KCC2 expression. In contrast, pharmacological inhibition of mGlu1 receptors with JNJ16259685 enhanced cerebellar KCC2 protein levels and KCC2 immunoreactivity in Purkinje cells, whereas treatment with the mGlu1 receptor PAM, RO0711401, reduced KCC2 expression. To examine whether the reduction in KCC2 expression caused by the absence or the inhibition of mGlu5 receptors could affect GABAergic transmission, we performed electrophysiological and behavioral studies. Recording of extracellular action potentials in Purkinje cells showed that the inhibitory effect of the GABAA receptor agonist, muscimol, was lost in cerebellar slices prepared from mGlu5-/- mice or from mice treated systemically with MPEP, in line with the reduction in KCC2 expression. Similarly, motor impairment caused by the GABAA receptor PAM, diazepam, was attenuated in mice pre-treated with MPEP. These findings disclose a novel function of mGlu5 receptors in the cerebellum and suggest that mGlu5 receptor ligands might influence GABAergic transmission in the cerebellum and affect motor responses to GABA-mimetic drugs. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.


Cerebellum/metabolism , Purkinje Cells/metabolism , Receptors, Metabotropic Glutamate/physiology , Symporters/biosynthesis , Action Potentials/physiology , Animals , Cerebellum/drug effects , Excitatory Amino Acid Antagonists/pharmacology , Gene Expression , Male , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Niacinamide/analogs & derivatives , Niacinamide/pharmacology , Purkinje Cells/drug effects , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Symporters/genetics , K Cl- Cotransporters
19.
Neurochem Res ; 41(4): 924-32, 2016 Apr.
Article En | MEDLINE | ID: mdl-26700429

mGlu1 and mGlu5 metabotropic glutamate receptors are expressed in the vertebrate retina, and are co-localized in some retinal neurons. It is believed that both receptors are coupled to polyphosphoinositide (PI) hydrolysis in the retina and their function may diverge in some cells because of a differential engagement of downstream signaling molecules. Here, we show that it is only the mGlu1 receptor that is coupled to PI hydrolysis in the retina. We used either bovine retinal slices or intact mouse retinas challenged with the mixed mGlu1/5 receptor agonist, DHPG. In both models, DHPG-stimulated PI hydrolysis was abrogated by the selective mGlu1 receptor antagonist, JNJ16259685, but was insensitive to the mGlu5 receptor antagonist, MPEP. In addition, the PI response to DHPG was unchanged in the retina of mGlu5(-/-) mice but was abolished in the retina of crv4 mice lacking mGlu1 receptors. Stimulation of the mitogen-activated protein kinase pathway by DHPG in intact mouse retinas were also entirely mediated by mGlu1 receptors. Our data provide the first example of a tissue in which a biochemically detectable PI response is mediated by mGlu1, but not mGlu5, receptors. Hence, bovine retinal slices might be used as a model for the functional screening of mGlu1 receptor ligands. In addition, the mGlu1 receptor caters the potential as a drug target in the experimental treatment of degenerative disorders of the retina.


Phosphatidylinositol Phosphates/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptors, Metabotropic Glutamate/metabolism , Retina/metabolism , Animals , Cattle , Glycine/analogs & derivatives , Glycine/pharmacology , Hydrolysis , Inositol Phosphates/biosynthesis , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Receptor, Metabotropic Glutamate 5/agonists , Receptor, Metabotropic Glutamate 5/genetics , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/genetics , Resorcinols/pharmacology , Signal Transduction
20.
Exp Eye Res ; 120: 109-17, 2014 Mar.
Article En | MEDLINE | ID: mdl-24486457

The study was designed to investigate the effects of a new ophthalmic solution containing 0.05% vitamin B12 0.05% on corneal nerve regeneration in rats after corneal injury. Eyes of anesthetized male Wistar rats were subjected to corneal injury by removing the corneal epithelium with corneal brush (Algerbrush). After the epithelial debridement, the right eye of each animal received the instillation of one drop of the ophthalmic solution containing vitamin B12 0.05% plus taurine 0.5% and sodium hyaluronate 0.5% four time per day for 10 or 30 days. Left eyes were used as control and treated with solution containing taurine 0.5% and sodium hyaluronate 0.5% alone following the same regimen. Fluorescein staining by slit-lamp and morphological analysis was used to determine corneal wound healing. Immunohistochemistry, immunoblot and confocal microscopy were used to examine corneal re-innervation. Slit-lamp and histological analyses showed that re-epithelization of the corneas was accelerated in rats treated with vitamin B12. A clear-cut difference between the two groups of rats was seen after 10 days of treatment, whereas a near-to-complete re-epithelization was observed in both groups at 30 days. Vitamin B12 treatment had also a remarkable effect on corneal re-innervation, as shown by substantial increased in the expression of neurofilament 160 and ß-III tubulin at both 10 and 30 days. The presence of SV2A-positive nerve endings suggests the presence of synapse-like specialized structures in corneal epithelium of the eye treated with vitamin B12. Our findings suggest that vitamin B12 treatment represents a powerful strategy to accelerate not only re-epithelization but also corneal re-innervation after mechanical injury.


Cornea/innervation , Eye Injuries/physiopathology , Nerve Regeneration/drug effects , Ophthalmic Nerve/physiology , Vitamin B 12/pharmacology , Vitamin B Complex/pharmacology , Wounds, Nonpenetrating/physiopathology , Animals , Corneal Injuries , Fluorophotometry , Hydrogen-Ion Concentration , Immunoblotting , Immunohistochemistry , Male , Microscopy, Confocal , Neurofilament Proteins/metabolism , Ophthalmic Solutions , Osmolar Concentration , Rats , Rats, Wistar , Taurine/pharmacology , Tubulin/metabolism
...