Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemMedChem ; 18(2): e202200551, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36315933

RESUMEN

The Ca2+ activated K+ channel KCa 3.1 is overexpressed in several human tumor cell lines, e. g. clear cell renal carcinoma, prostate cancer, non-small cell lung cancer. Highly aggressive cancer cells use this ion channel for key processes of the metastatic cascade such as migration, extravasation and invasion. Therefore, small molecules, which are able to image this KCa 3.1 channel in vitro and in vivo represent valuable diagnostic and prognostic tool compounds. The [18 F]fluoroethyltriazolyl substituted senicapoc was used as positron emission tomography (PET) tracer and showed promising properties for imaging of KCa 3.1 channels in lung adenocarcinoma cells in mice. The novel senicapoc BODIPY conjugates with two F-atoms (9 a) and with a F-atom and a methoxy moiety (9 b) at the B-atom led to the characteristic punctate staining pattern resulting from labeling of single KCa 3.1 channels in A549-3R cells. This punctate pattern was completely removed by preincubation with an excess of senicapoc confirming the high specificity of KCa 3.1 labeling. Due to the methoxy moiety at the B-atom and the additional oxyethylene unit in the spacer, 9 b exhibits higher polarity, which improves solubility and handling without reduction of fluorescence quantum yield. Docking studies using a cryo-electron microscopy (EM) structure of the KCa 3.1 channel confirmed the interaction of 9 a and 9 b with a binding pocket in the channel pore.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Masculino , Ratones , Humanos , Animales , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Colorantes Fluorescentes , Microscopía por Crioelectrón , Tomografía de Emisión de Positrones , Línea Celular Tumoral
2.
Arch Pharm (Weinheim) ; 355(12): e2200388, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36161669

RESUMEN

The calcium-activated potassium channel 3.1 (KCa 3.1) is overexpressed in many tumor entities and has predictive power concerning disease progression and outcome. Imaging of the KCa 3.1 channel in vivo using a radiotracer for positron emission tomography (PET) could therefore establish a potentially powerful diagnostic tool. Senicapoc shows high affinity and excellent selectivity toward the KCa 3.1 channel. We have successfully pursued the synthesis of the 18 F-labeled derivative [18 F]3 of senicapoc using the prosthetic group approach with 1-azido-2-[18 F]fluoroethane ([18 F]6) in a "click" reaction. The biological activity of the new PET tracer was evaluated in vitro and in vivo. Inhibition of the KCa 3.1 channel by 3 was demonstrated by patch clamp experiments and the binding pose was analyzed by docking studies. In mouse and human serum, [18 F]3 was stable for at least one half-life of [18 F]fluorine. Biodistribution experiments in wild-type mice were promising, showing rapid and predominantly renal excretion. An in vivo study using A549-based tumor-bearing mice was performed. The tumor signal could be delineated and image analysis showed a tumor-to-muscle ratio of 1.47 ± 0.24. The approach using 1-azido-2-[18 F]fluoroethane seems to be a good general strategy to achieve triarylacetamide-based fluorinated PET tracers for imaging of the KCa 3.1 channel in vivo.


Asunto(s)
Neoplasias , Canales de Potasio Calcio-Activados , Animales , Humanos , Ratones , Radioisótopos de Flúor/metabolismo , Radiofármacos/farmacología , Radiofármacos/metabolismo , Distribución Tisular , Canales de Potasio Calcio-Activados/metabolismo , Relación Estructura-Actividad , Tomografía de Emisión de Positrones/métodos , Neoplasias/metabolismo
3.
Org Biomol Chem ; 19(18): 4082-4099, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33978027

RESUMEN

In order to analyze the bioactive conformation of flexible KOR agonists the ethylenediamine KOR pharmacophore was conformationally constrained by incorporation into a bicyclic system. For this purpose, 2-azabicyclo[3.2.1.]octan-7-amines were designed, synthesized and pharmacologically evaluated. The primary amine 14 as first key intermediate was prepared in a six-step synthesis starting with methyl cyclopent-3-enecarboxylate 9. Whereas phenylacetamides failed to provide bicyclic compounds, the intramolecular nucleophilic substitution of the sulfonamide 25 was initiated by deprotonation with NaH affording the bicyclic compound 26 in 72% yield. The three-step introduction of the pharmacophoric pyrrolidine ring started with nucleophilic substitution of exo-configured tosylate 26 with NaN3, which unexpectedly occurred under retention of configuration leading to exo-configured azide 31. The final KOR agonists 35 and 36 with exo-configured amino moieties were obtained by removal of the N-tosyl moiety of 33 and introduction of the second pharmacophoric element by acylation with dihalophenylacetyl chlorides. The KOR affinity of the pyrrolidine 35a is in the high nanomolar range (Ki = 862 nM). The low KOR affinity is explained by a non-appropriate dihedral angle of 137°/141° of the N(pyrrolidine)-C-C-N(acyl) system. As observed for stereoisomers of potent KOR agonists, phenylacetamide 35a and more importantly sulfonamides 33a and 33b show moderate affinity at σ1 receptors (Ki = 109-208 nM).

4.
Cell Physiol Biochem ; 55(S3): 131-144, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34043300

RESUMEN

The Kca3.1 channels, previously designated as IK1 or SK4 channels and encoded by the KCNN4 gene, are activated by a rise of the intracellular Ca2+ concentration. These K+ channels are widely expressed in many organs and involved in many pathologies. In particular, Kca3.1 channels have been studied intensively in the context of cancer. They are not only a marker and a valid prognostic tool for cancer patients, but have an important share in driving cancer progression. Their function is required for many characteristic features of the aggressive cancer cell behavior such as migration, invasion and metastasis as well as proliferation and therapy resistance. In the context of cancer, another property of Kca3.1 is now emerging. These channels can be a target for novel small molecule-based imaging probes, as it has been validated in case of fluorescently labeled senicapoc-derivatives. The aim of this review is (i) to give an overview on the role of Kca3.1 channels in cancer progression and in shaping the cancer microenvironment, (ii) discuss the potential of using Kca3.1 targeting drugs for cancer imaging, (iii) and highlight the possibility of combining molecular dynamics simulations to image inhibitor binding to Kca3.1 channels in order to provide a deeper understanding of Kca3.1 channel pharmacology. Alltogether, Kca3.1 is an attractive therapeutic target so that senicapoc, originally developed for the treatment of sickle cell anemia, should be repurposed for the treatment of cancer patients.


Asunto(s)
Acetamidas/uso terapéutico , Antineoplásicos/uso terapéutico , Calcio/metabolismo , Neoplasias/tratamiento farmacológico , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Compuestos de Tritilo/uso terapéutico , Antineoplásicos/química , Antidrepanocíticos/química , Antidrepanocíticos/uso terapéutico , Sitios de Unión , Señalización del Calcio , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida/métodos , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Bloqueadores de los Canales de Potasio/química , Estructura Secundaria de Proteína , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/química , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
5.
Cell Physiol Biochem ; 55(S3): 14-45, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33656309

RESUMEN

Although ion channels are crucial in many physiological processes and constitute an important class of drug targets, much is still unclear about their function and possible malfunctions that lead to diseases. In recent years, computational methods have evolved into important and invaluable approaches for studying ion channels and their functions. This is mainly due to their demanding mechanism of action where a static picture of an ion channel structure is often insufficient to fully understand the underlying mechanism. Therefore, the use of computational methods is as important as chemical-biological based experimental methods for a better understanding of ion channels. This review provides an overview on a variety of computational methods and software specific to the field of ion-channels. Artificial intelligence (or more precisely machine learning) approaches are applied for the sequence-based prediction of ion channel family, or topology of the transmembrane region. In case sufficient data on ion channel modulators is available, these methods can also be applied for quantitative structureactivity relationship (QSAR) analysis. Molecular dynamics (MD) simulations combined with computational molecular design methods such as docking can be used for analysing the function of ion channels including ion conductance, different conformational states, binding sites and ligand interactions, and the influence of mutations on their function. In the absence of a three-dimensional protein structure, homology modelling can be applied to create a model of your ion channel structure of interest. Besides highlighting a wide range of successful applications, we will also provide a basic introduction to the most important computational methods and discuss best practices to get a rough idea of possible applications and risks.


Asunto(s)
Inteligencia Artificial , Canales Iónicos/química , Moduladores del Transporte de Membrana/química , Simulación de Dinámica Molecular , Programas Informáticos , Animales , Sitios de Unión , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Ligandos , Moduladores del Transporte de Membrana/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad Cuantitativa , Homología Estructural de Proteína
6.
ChemMedChem ; 15(24): 2462-2469, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33043595

RESUMEN

The Ca2+ activated potassium channel 3.1 (KCa 3.1) is involved in critical steps of the metastatic cascade, such as proliferation, migration, invasion and extravasation. Therefore, a fast and efficient protocol for imaging of KCa 3.1 channels was envisaged. The novel fluorescently labeled small molecule imaging probes 1 and 2 were synthesized by connecting a dimethylpyrrole-based BODIPY dye with a derivative of the KCa 3.1 channel inhibitor senicapoc via linkers of different length. Patch-clamp experiments revealed the inhibition of KCa 3.1 channels by the probes confirming interaction with the channel. Both probes 1 and 2 were able to stain KCa 3.1 channels in non-small-cell lung cancer (NSCLC) cells following a simple, fast and efficient protocol. Pre-incubation with unlabeled senicapoc removed the punctate staining pattern showing the specificity of the new probes 1 and 2. Staining of the channel with the fluorescently labeled senicapoc derivatives 1 or 2 or with antibody-based indirect immunofluorescence yielded identical or very similar densities of stained KCa 3.1 channels. However, co-staining using both methods did not lead to the expected overlapping punctate staining pattern. This observation was explained by docking studies showing that the antibody used for indirect immunofluorescence and the probes 1 and 2 label different channel populations. Whereas the antibody binds at the closed channel conformation, the probes 1 and 2 bind within the open channel.


Asunto(s)
Acetamidas/farmacología , Compuestos de Boro/farmacología , Colorantes Fluorescentes/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Compuestos de Tritilo/farmacología , Células A549 , Acetamidas/metabolismo , Animales , Anticuerpos/inmunología , Anticuerpos/metabolismo , Compuestos de Boro/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Colorantes Fluorescentes/metabolismo , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/inmunología , Ratones , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Unión Proteica , Coloración y Etiquetado , Compuestos de Tritilo/metabolismo
7.
Angew Chem Int Ed Engl ; 59(21): 8277-8284, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32097518

RESUMEN

Small-molecule probes for the in vitro imaging of KCa 3.1 channel-expressing cells were developed. Senicapoc, showing high affinity and selectivity for the KCa 3.1 channels, was chosen as the targeting component. BODIPY dyes 15-20 were synthesized and connected by a CuI -catalyzed azide-alkyne [3+2]cycloaddition with propargyl ether senicapoc derivative 8, yielding fluorescently labeled ligands 21-26. The dimethylpyrrole-based imaging probes 25 and 26 allow staining of KCa 3.1 channels in NSCLC cells. The specificity was shown by removing the punctate staining pattern by pre-incubation with senicapoc. The density of KCa 3.1 channels detected with 25 and by immunostaining was identical. The punctate structure of the labeled channels could also be observed in living cells. Molecular modeling showed binding of the senicapoc-targeting component towards the binding site within the ion channel and orientation of the linker with the dye along the inner surface of the ion channel.


Asunto(s)
Colorantes Fluorescentes/química , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Células A549 , Sitios de Unión , Compuestos de Boro/química , Reacción de Cicloadición , Colorantes Fluorescentes/síntesis química , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/química , Ligandos , Microscopía Fluorescente , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA